Research Article
BibTex RIS Cite

PVA/ AMBERLİT IRA 743 HİBRİT MEMBRAN İLE ENDÜSTRİYEL ATIK SUDAN BOR GİDERİMİ

Year 2021, , 981 - 994, 04.12.2021
https://doi.org/10.36306/konjes.957034

Abstract

Bu çalışmada, pervaporasyon prosesi ile endüstriyel atık sudan borun uzaklaştırılması incelenmiştir. Bu işlem için Saf PVA ve Amberlit IRA 743 katkılı PVA membranlar hazırlanmıştır. SEM analizinde, saf membranlarda yoğun ve homojen bir yapı gözlenirken, katkılı membranda Amberlit IRA 743 dağılımı açıkça görülmektedir. Amberlit IRA743 ilavesinin ve çapraz bağlanmanın membranın kimyasal bağ yapısında meydana getirdiği değişimler Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi ile belirlenmiştir. Membranların suya karşı ilgisi şişme testi ile belirlenirken, yüzey hidrofilikliği temas açısı ölçümleriyle araştırılmıştır. Sıcaklığın ve Amberlit IRA 743 yükleme oranının membranın ayırma performansına etkisi incelenmiştir. Sıcaklığın artması suyun akısını artırırken bor giderimine önemli bir etkisi olmamıştır. Amberlit IRA 743 miktarının artması ile suyun akısı azalırken bor giderimi artmıştır. PVA/Amberlit IRA 743 membranların endüstriyel atık sulardan bor gideriminde yüksek ayırma performansı gösterdiği ve %99’dan daha fazla oranda bor giderildiği tespit edilmiştir.

Supporting Institution

Bursa Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

191N015

Thanks

Bu çalışma Bursa Teknik Üniversitesi Bilimsel Araştırma Projeleri birimi tarafından 191N015 numaralı proje kapsamında desteklenmiştir.

References

  • Assabumrungrat, S., Phongpatthanapanich, J., Praserthdam, P., Tagawa, T. and Goto, S., 2003,“Theoretical study on the synthesis of methyl acetate from methanol and acetic acid in pervaporation membrane reactors: effect of continuous-flow modes”, Chemical Engineering Journal, Vol. 95, No.(1-3), pp. 57-65.
  • Ateş, Ç., Bayraktar, B., Bilen, M., 2018, “Yanıt yüzey yöntemi ile bir bor fabrikası atık suyu kimyasal arıtma sürecinde optimum koşulların belirlenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Vol. 33, No.1, pp. 267-278.
  • Belessiotis, V., Kalogirou, S., Delyannis, E., 2016, Thermal solar desalination: Methods and systems,, Joe Hayton publication,Chennai, India.
  • Busch, M., Mickols, W. E., 2004, “Reducing energy consumption in seawater desalination”, Desalination, Vol. 165, pp. 299-312.
  • Celik, Z. C., Can, B. Z., Kocakerim, M. M., 2008, “Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid”, Journal of Hazardous Materials, Vol. 152,No.1, pp. 415-422.
  • Cengeloglu, Y., Arslan, G., Tor, A., Kocak, I., Dursun, N., 2008,“Removal of boron from water by using reverse osmosis”, Separation and Purification Technology, Vol. 64, No.2, 141-146.
  • Darwish, N. B., Kochkodan, V. Hilal, N., 2015,” Boron removal from water with fractionized Amberlite IRA 743 resin”, Desalination, Vol. 370, pp.1-6.
  • DSÖ,2011,“Guidelines for drinking-water quality”. WHO chronicle, Vol. 38, No.4, pp. 104-108. Eti Maden İşletmeleri Genel Müdürlüğü, 2016, Faaliyet Raporu 2016 yılı, Erişim adresi: https://www.etimaden.gov.tr/storage/Etik%20Komisyon/2016Yili%20Etik%20FR.pdf.
  • Garcia-Segura, S., Eiband, M. M. S., de Melo, J. V., Martínez-Huitle, C. A., 2017,“Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other Technologies”, Journal of Electroanalytical Chemistry, Vol. 801,pp. 267-299.
  • Glueckstern, P.,Priel, M., 2003,“Optimization of boron removal in old and new SWRO systems”. Desalination, Vol. 156, No.1-3, pp. 219-228.
  • Hou, D., Dai, G., Wang, J., Fan, H., Luan, Z., Fu, C., 2013,“Boron removal and desalination from seawater by PVDF flat-sheet membrane through direct contact membrane distillation”,Desalination, Vol.326,pp.115-124.
  • Huang, R.Y.M., 1991, Pervaporation Membrane Separation Processes,, Elsevier Science Publishers BV: Amsterdam.
  • Isa, M. H., Ezechi, E. H., Ahmed, Z., Magram, S. F., Kutty, S. R. M., 2014, “Boron removal by electrocoagulation and recovery”, Water research, Vol.51, pp. 113-123.
  • Kabay, N., Sarp, S., Yuksel, M., Arar, Ö., Bryjak, M., 2007,“Removal of boron from seawater by selective ion exchange resins”, Reactive and Functional Polymers, Vol. 67 No.12, 1643-1650.
  • Kabay, N., Sarp, S., Yuksel, M., Kitis, M., Koseoğlu, H., Arar, O., Semiat, R., 2008,“Removal of boron from SWRO permeate by boron selective ion exchange resins containing N-methyl glucamine groups”, Desalination, Vol. 22,3No.1-3,pp. 49-56.
  • Kavak, D., 2009, “Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design”, Journal of Hazardous Materials, Vol. 163 No.1,pp. 308-314.
  • Lobinski, R. , Marczenko, Z. , 1996, Comprehensive Analytical Chemistry, Elsevier Publisher.
  • Meng, J., Li, P., Cao, B., 2019, “High-flux direct-contact pervaporation membranes for desalination”. ACS applied materials & interfaces, Vol. 11, No. 31, pp. 28461-28468.
  • Nigiz, F. U., 2018,“Dahili Membran Reaktörde Kullanılmak Üzere Yüksek Performanslı Polivinil Alkol Membran Üretimi ve Etanol-Propiyonik Asit Esterleşme Reaksiyonunda Uygulaması”,Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol. 22, No. 2, pp. 1095-1103.
  • Öztürk, N.,Kavak, D., 2004,“Boron removal from aqueous solutions by adsorption on waste sepiolite and activated waste sepiolite using full factorial design”, Adsorption, Vol. 10, No. 3, 245-257.
  • Öztürk, N., Kavak, D., Köse, T. E., 2008,“Boron removal from aqueous solution by reverse osmosis”, Desalination, Vol.223,No.1-3,pp.1-9.
  • Pastor, M. R., Ruiz, A. F., Chillon, M. F., Rico, D. P.,2001,“Influence of pH in the elimination of boron by means of reverse osmosis”,Desalination, Vol. 140, No.2, 145-152.
  • Peters,T. A.,2006, Catalytic pervaporation membranes for close integration of reaction and separation. Phd Thesis, TechnischeUniversiteit Eindhoven, Eindhoven.
  • Peters, T. A., Poeth, C. H. S., Benes, N. E., Buijs, H. C. W. M., Vercauteren, F. F., Keurentjes, J. T. F., 2006,“Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity; contradicting the flux-selectivity paradigm”, Journal of Membrane Science, Vol. 276, No.1-2, pp.42-50.
  • Prihatiningtyas, I., Gebreslase, G. A., Van der Bruggen, B., 2020,“Incorporation of Al2O3 into cellulose triacetate membranes to enhance the performance of pervaporation for desalination of hypersaline solutions”, Desalination, Vo.474,No. 114198.
  • Rudra, R., Kumar, V. and Kundu, P. P.,2015,“Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells” RSC advances, Vol. 5, No.101, 83436-83447.
  • Salehi, M. A., Rostamani, R., 2013, “Review of membrane distillation for the production of fresh water from saline water”, Journal of Novel Applied Science, Vol. 2, pp.1072-1077.
  • Seiler, H. G., Sigel, H., Sigel, A.,1988, Handbook on toxicity of inorganic compounds, New York: Elsevier.
  • Simonnot, M. O., Castel, C., Nicolai, M., Rosin, C., Sardin, M., Jauffret, H., 2000, “Boron removal from drinking water with a boron selective resin: is the treatment really selective”, Water Research, Vol.34, No.1, pp. 109-116.
  • Tirnakci, B., Salt, Y.,Salt, İ., Keyf S., 2020,“Klinoptilolit Dolgulu PVA Membranların Hazırlanması, Karakterizasyonu ve Pervaporasyon ile Desalinasyon Çalışması”, Avrupa Bilim ve Teknoloji Dergisi,Vol. 18,pp. 711-718.
  • Tortora, F., Innocenzi, V., di Celso, G. M., Vegliò, F., Capocelli, M., Piemonte, V., Prisciandaro, M., 2018,“Application of micellar-enhanced ultrafiltration in the pre-treatment of seawater for boron removal”, Desalination, Vol. 428, pp. 21-28.
  • Unlu, D., Hilmioglu, N. D., 2016, “Pervaporation catalytic membrane reactor study for the production of ethyl acetate using Zr(SO4)2.4H2O coated chitosan membrane”, Journal of Chemical Technology & Biotechnology, Vol. 91, No. 1,pp. 122-130.
  • Ünlü D., 2020,“Biyoyakıt Bütanolün Metal Organik Kafes (MOF) içeren Karışık Matrisli UiO-66/PVA Membranlar Kullanılarak Pervaporasyon Prosesi ile Dehidrasyonu”, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol. 10, No.1,pp. 275-285.
  • Xie, Z., Ng, D., Hoang, M., Duong, T., Gray, S., 2011,“Separation of aqueous salt solution by pervaporation through hybrid organic–inorganic membrane: effect of operating conditions”, Desalination, Vol. 273, No.1, pp. 220-225.
  • Yilman, B., Nigiz, F. U., Aytaç, A. and Hilmioglu, N. D., 2019,“Multi-walled carbon nanotube doped PVA membrane for desalination”, Water Supply, Vol. 19, No.4,pp.1229–1237.
  • Yılmaz, A. E., Boncukcuoglu, R., Yılmaz, M. T., Kocakerim, M. M., 2005,“Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor”. Journal of Hazardous Materials,Vol. 117, No.2-3,pp. 221-226.
  • Yilmaz, A. E., Boncukcuoğlu, R., Bayar, S., Fil, B. A., Kocakerim, M. M., 2012,“Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation”, Korean Journal of Chemical Engineering, Vol. 29, No.10,pp. 1382-1387.
  • Zhang, R., Liang, B., Qu, T., Cao, B., Li, P., 2019, “ High-performance sulfosuccinic acid cross-linked PVA composite pervaporation membrane for desalination”, Environmental technology, Vol. 40, No. 3, pp. 312-320.

Boron Removal from Industrial Wastewater with A PVA/ Amberlite IRA 743 Hybrid Membrane

Year 2021, , 981 - 994, 04.12.2021
https://doi.org/10.36306/konjes.957034

Abstract

In this study, the removal of boron from industrial wastewater was investigated by the pervaporation process. Pristine PVA and Amberlite IRA 743 doped PVA membranes have been prepared for this process. In the SEM analysis, while the dense and homogeneous structure was observed in pristine membranes, Amberlite IRA 743 distributions in doped membrane were seen clearly. The changes in the chemical bond structure of the membrane that is caused by the addition of Amberlite IRA 743 and cross-linking were determined by Fourier transform infrared (FTIR). While the affinity of the membranes on water was determined by the swelling test, the surface hydrophilicity was investigated by contact angle measurements. The effects of temperature and Amberlite IRA 743 amount were investigated on separation performance. While the increase in temperature increased the water flux, it did not have a significant effect on boron removal. While the water flux decreased, the boron removal increased with the increase of Amberlite IRA 743 amount. It has been determined that PVA Amberlite IRA 743 membranes show high separation performance in boron removal from industrial wastewater and more than 99% boron is removed.

Project Number

191N015

References

  • Assabumrungrat, S., Phongpatthanapanich, J., Praserthdam, P., Tagawa, T. and Goto, S., 2003,“Theoretical study on the synthesis of methyl acetate from methanol and acetic acid in pervaporation membrane reactors: effect of continuous-flow modes”, Chemical Engineering Journal, Vol. 95, No.(1-3), pp. 57-65.
  • Ateş, Ç., Bayraktar, B., Bilen, M., 2018, “Yanıt yüzey yöntemi ile bir bor fabrikası atık suyu kimyasal arıtma sürecinde optimum koşulların belirlenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Vol. 33, No.1, pp. 267-278.
  • Belessiotis, V., Kalogirou, S., Delyannis, E., 2016, Thermal solar desalination: Methods and systems,, Joe Hayton publication,Chennai, India.
  • Busch, M., Mickols, W. E., 2004, “Reducing energy consumption in seawater desalination”, Desalination, Vol. 165, pp. 299-312.
  • Celik, Z. C., Can, B. Z., Kocakerim, M. M., 2008, “Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid”, Journal of Hazardous Materials, Vol. 152,No.1, pp. 415-422.
  • Cengeloglu, Y., Arslan, G., Tor, A., Kocak, I., Dursun, N., 2008,“Removal of boron from water by using reverse osmosis”, Separation and Purification Technology, Vol. 64, No.2, 141-146.
  • Darwish, N. B., Kochkodan, V. Hilal, N., 2015,” Boron removal from water with fractionized Amberlite IRA 743 resin”, Desalination, Vol. 370, pp.1-6.
  • DSÖ,2011,“Guidelines for drinking-water quality”. WHO chronicle, Vol. 38, No.4, pp. 104-108. Eti Maden İşletmeleri Genel Müdürlüğü, 2016, Faaliyet Raporu 2016 yılı, Erişim adresi: https://www.etimaden.gov.tr/storage/Etik%20Komisyon/2016Yili%20Etik%20FR.pdf.
  • Garcia-Segura, S., Eiband, M. M. S., de Melo, J. V., Martínez-Huitle, C. A., 2017,“Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other Technologies”, Journal of Electroanalytical Chemistry, Vol. 801,pp. 267-299.
  • Glueckstern, P.,Priel, M., 2003,“Optimization of boron removal in old and new SWRO systems”. Desalination, Vol. 156, No.1-3, pp. 219-228.
  • Hou, D., Dai, G., Wang, J., Fan, H., Luan, Z., Fu, C., 2013,“Boron removal and desalination from seawater by PVDF flat-sheet membrane through direct contact membrane distillation”,Desalination, Vol.326,pp.115-124.
  • Huang, R.Y.M., 1991, Pervaporation Membrane Separation Processes,, Elsevier Science Publishers BV: Amsterdam.
  • Isa, M. H., Ezechi, E. H., Ahmed, Z., Magram, S. F., Kutty, S. R. M., 2014, “Boron removal by electrocoagulation and recovery”, Water research, Vol.51, pp. 113-123.
  • Kabay, N., Sarp, S., Yuksel, M., Arar, Ö., Bryjak, M., 2007,“Removal of boron from seawater by selective ion exchange resins”, Reactive and Functional Polymers, Vol. 67 No.12, 1643-1650.
  • Kabay, N., Sarp, S., Yuksel, M., Kitis, M., Koseoğlu, H., Arar, O., Semiat, R., 2008,“Removal of boron from SWRO permeate by boron selective ion exchange resins containing N-methyl glucamine groups”, Desalination, Vol. 22,3No.1-3,pp. 49-56.
  • Kavak, D., 2009, “Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design”, Journal of Hazardous Materials, Vol. 163 No.1,pp. 308-314.
  • Lobinski, R. , Marczenko, Z. , 1996, Comprehensive Analytical Chemistry, Elsevier Publisher.
  • Meng, J., Li, P., Cao, B., 2019, “High-flux direct-contact pervaporation membranes for desalination”. ACS applied materials & interfaces, Vol. 11, No. 31, pp. 28461-28468.
  • Nigiz, F. U., 2018,“Dahili Membran Reaktörde Kullanılmak Üzere Yüksek Performanslı Polivinil Alkol Membran Üretimi ve Etanol-Propiyonik Asit Esterleşme Reaksiyonunda Uygulaması”,Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol. 22, No. 2, pp. 1095-1103.
  • Öztürk, N.,Kavak, D., 2004,“Boron removal from aqueous solutions by adsorption on waste sepiolite and activated waste sepiolite using full factorial design”, Adsorption, Vol. 10, No. 3, 245-257.
  • Öztürk, N., Kavak, D., Köse, T. E., 2008,“Boron removal from aqueous solution by reverse osmosis”, Desalination, Vol.223,No.1-3,pp.1-9.
  • Pastor, M. R., Ruiz, A. F., Chillon, M. F., Rico, D. P.,2001,“Influence of pH in the elimination of boron by means of reverse osmosis”,Desalination, Vol. 140, No.2, 145-152.
  • Peters,T. A.,2006, Catalytic pervaporation membranes for close integration of reaction and separation. Phd Thesis, TechnischeUniversiteit Eindhoven, Eindhoven.
  • Peters, T. A., Poeth, C. H. S., Benes, N. E., Buijs, H. C. W. M., Vercauteren, F. F., Keurentjes, J. T. F., 2006,“Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity; contradicting the flux-selectivity paradigm”, Journal of Membrane Science, Vol. 276, No.1-2, pp.42-50.
  • Prihatiningtyas, I., Gebreslase, G. A., Van der Bruggen, B., 2020,“Incorporation of Al2O3 into cellulose triacetate membranes to enhance the performance of pervaporation for desalination of hypersaline solutions”, Desalination, Vo.474,No. 114198.
  • Rudra, R., Kumar, V. and Kundu, P. P.,2015,“Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells” RSC advances, Vol. 5, No.101, 83436-83447.
  • Salehi, M. A., Rostamani, R., 2013, “Review of membrane distillation for the production of fresh water from saline water”, Journal of Novel Applied Science, Vol. 2, pp.1072-1077.
  • Seiler, H. G., Sigel, H., Sigel, A.,1988, Handbook on toxicity of inorganic compounds, New York: Elsevier.
  • Simonnot, M. O., Castel, C., Nicolai, M., Rosin, C., Sardin, M., Jauffret, H., 2000, “Boron removal from drinking water with a boron selective resin: is the treatment really selective”, Water Research, Vol.34, No.1, pp. 109-116.
  • Tirnakci, B., Salt, Y.,Salt, İ., Keyf S., 2020,“Klinoptilolit Dolgulu PVA Membranların Hazırlanması, Karakterizasyonu ve Pervaporasyon ile Desalinasyon Çalışması”, Avrupa Bilim ve Teknoloji Dergisi,Vol. 18,pp. 711-718.
  • Tortora, F., Innocenzi, V., di Celso, G. M., Vegliò, F., Capocelli, M., Piemonte, V., Prisciandaro, M., 2018,“Application of micellar-enhanced ultrafiltration in the pre-treatment of seawater for boron removal”, Desalination, Vol. 428, pp. 21-28.
  • Unlu, D., Hilmioglu, N. D., 2016, “Pervaporation catalytic membrane reactor study for the production of ethyl acetate using Zr(SO4)2.4H2O coated chitosan membrane”, Journal of Chemical Technology & Biotechnology, Vol. 91, No. 1,pp. 122-130.
  • Ünlü D., 2020,“Biyoyakıt Bütanolün Metal Organik Kafes (MOF) içeren Karışık Matrisli UiO-66/PVA Membranlar Kullanılarak Pervaporasyon Prosesi ile Dehidrasyonu”, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol. 10, No.1,pp. 275-285.
  • Xie, Z., Ng, D., Hoang, M., Duong, T., Gray, S., 2011,“Separation of aqueous salt solution by pervaporation through hybrid organic–inorganic membrane: effect of operating conditions”, Desalination, Vol. 273, No.1, pp. 220-225.
  • Yilman, B., Nigiz, F. U., Aytaç, A. and Hilmioglu, N. D., 2019,“Multi-walled carbon nanotube doped PVA membrane for desalination”, Water Supply, Vol. 19, No.4,pp.1229–1237.
  • Yılmaz, A. E., Boncukcuoglu, R., Yılmaz, M. T., Kocakerim, M. M., 2005,“Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor”. Journal of Hazardous Materials,Vol. 117, No.2-3,pp. 221-226.
  • Yilmaz, A. E., Boncukcuoğlu, R., Bayar, S., Fil, B. A., Kocakerim, M. M., 2012,“Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation”, Korean Journal of Chemical Engineering, Vol. 29, No.10,pp. 1382-1387.
  • Zhang, R., Liang, B., Qu, T., Cao, B., Li, P., 2019, “ High-performance sulfosuccinic acid cross-linked PVA composite pervaporation membrane for desalination”, Environmental technology, Vol. 40, No. 3, pp. 312-320.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehtap Özekmekci 0000-0001-5808-5957

Derya Ünlü 0000-0001-5240-5876

Mehmet Çopur 0000-0002-8574-1056

Project Number 191N015
Publication Date December 4, 2021
Submission Date June 24, 2021
Acceptance Date October 6, 2021
Published in Issue Year 2021

Cite

IEEE M. Özekmekci, D. Ünlü, and M. Çopur, “PVA/ AMBERLİT IRA 743 HİBRİT MEMBRAN İLE ENDÜSTRİYEL ATIK SUDAN BOR GİDERİMİ”, KONJES, vol. 9, no. 4, pp. 981–994, 2021, doi: 10.36306/konjes.957034.