Research Article
BibTex RIS Cite

KENEVİR ATIKLARININ KARBONİZASYONU VE AKTİF KARBON ELDESİ

Year 2022, , 29 - 39, 01.03.2022
https://doi.org/10.36306/konjes.967894

Abstract

Bu çalışmada; bilimsel çalışmalarda kullanılmak üzere Malatya Turgut Özal Üniversitesi Ziraat Fakültesi bünyesinde yetiştirilen kenevir bitkisinin atık kısımları (kök, gövde ve diğer) değerlendirilmiştir. Kenevir atıklarından karbonizasyon ile kimyasal aktivasyon yöntemi kullanılarak aktif karbon elde edilmiş ve karakterizasyon deneyleri gerçekleştirilmiştir. İlk olarak, kenevir atıklarının 100 ml/dk N2 gazı akışında, 1 saat süreyle, 500°C sıcaklıkta karbonizasyonu yapılmıştır. Karbonize edilmiş ürün, ağırlıkça farklı oranlarda (1:1, 1:2, 1:3 ve 1:4) KOH emdirilerek aktivasyon işlemi için hazırlanmıştır. Etüvde kurutulan ürünler daha sonra aktivasyona tabii tutulmuştur. Kimyasal aktivasyon işlemi 100 ml/dk N2 gazı akışında, 1 saat süreyle, 800°C’de gerçekleştirilmiştir. Daha sonra oda sıcaklığına soğutulan karışım fırından alınarak üzerine seyreltik HCl eklenerek, bir ısıtıcı yardımıyla ısıtma işlemi yapılmıştır. Soğuduktan sonra süzülerek, saf su ile klorür tepkimesi vermeyinceye kadar (AgNO3 testi ile) yıkanmıştır. Daha sonra etüve konarak, iyice kuruması sağlanmıştır. Etüvde kurutulan aktif karbon örneklerinin karakterizasyonunu belirlemek için elementel (C, H, N, S) analiz, XRD, FTIR ve SEM analizleri gerçekleştirilmiştir. Ayrıca, aktif karbonların BET azot adsorpsiyonu yüzey alanı ölçümü ile, yüzey alanı ve gözenekliliği belirlenmiştir. Karbonize edilmiş kenevir atığında toplam yüzey alanı (Stotal) 171,75 m2/g, mikrogözenek alanı (Smikro) 145,46 m2/g ve mezogözenek alanı (Smezo) 26,29 m2/g iken bu değerler 1:4 oranında KOH emdirilmiş aktif karbonda sırasıyla 1881,80 m2/g, 1152,40 m2/g ve 728,40 m2/g olarak hesaplanmıştır. Karbonize üründe 0,077 cm3/g olan gözenek hacmi, aktif karbonda 0,8852 cm3/g olarak belirlenmiştir. Karbonize ürün ve aktif karbonun ortalama gözenek çapları (dp) sırasıyla 1,78 nm ve 1,88 nm olarak belirlenmiştir.

References

  • Chandra, T.C., Mirna, M.M., Sudaryanto, Y., Ismadji, S., 2007, “Adsorption of basic dye onto activated carbon prepared from durian shell: studies of adsorption equilibrium and kinetics”, Chemical Engineering Journal, Cilt 127, ss. 121–129.
  • Dizbay-Onat, M., Vaidya, U.K., Balanay, J.A.G., Lungu, C.T., 2018, “Preparation and characterization of flax, hemp and sisal fiber-derived mesoporous activated carbon adsorbents”, Adsorption Science and Technology, Cilt 36, Sayı 1-2, ss. 441-457.
  • Fierro, V., Torne-Fernandez, V., Celzard, A., 2006, “Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: Synthesis and textural characterization”, Microporous and Mesoporous Materials, Cilt 92, Sayı 1-3, ss. 243-250.
  • Gao, S., Ge, L., Rufford, T.E., Zhu, Z., 2017, “The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO2, CH4 and N2”, Microporous Mesoporous Mater., Cilt 238, ss. 19–26.
  • Guan, Z., Guan, Z., Li, Z., Liu, J., Yu, K., 2019, “Characterization and preparation of nano-porous carbon derived from hemp stems as anode for lithium-ion batteries”, Nanoscale Research Letters, Cilt 14, Sayı 1, ss. 1-9.
  • Hong, S.M., Choi, S.W., Kim, S.H., Lee, K.B., 2016, “Porous carbon based on polyvinylidene fluoride: enhancement of CO2 adsorption by physical activation”, Carbon, Cilt 99, ss. 354–360.
  • Hossain, M.Z., Wu, W., Xu, W.Z., Chowdhury, M.B.I., Jhawar, A.K., Machin, D., Charpentier, P.A., 2018, “High-Surface-Area Mesoporous Activated Carbon from Hemp Bast Fiber Using Hydrothermal Processing”, Journal of Carbon Research, Cilt 4, Sayı 38, ss. 1-15.
  • Ivanichok, N. Y., Budzuliak, I. M., Moiseienko, M. I., Lisovskiy, R. P., Rachii, B. I., Gamarnyk, A. M., Lisovska, S. A., 2020, “Electrochemical properties of nanoporous carbon materials obtained from raw materials of plant origin (hemp shives)”, Physics and Chemistry of Solid State, Cilt 21, Sayı 1, ss. 35-42.
  • Jiang, X., Shi, G., Wang, G., Mishra, P., Liu, C., Dong, Y., Zhang, H., 2019, “A hydrothermal carbonization process for the preparation of activated carbons from hemp straw: an efficient electrode material for supercapacitor application”, Ionics, Cilt 25, Sayı 7, ss. 3299-3307.
  • Jiang, X., Shi, G., Wang, G., Mishra, P., Du, J., Zhang, Y., 2020, “Fe2O3/hemp straw-based porous carbon composite for supercapacitor electrode materials”, Ionics, Cilt 26, ss. 4039-4051.
  • Jibril, B., Houache, O., Al-Maamari, R., Al-Rashidi, B., 2008, “Effects of H3PO4 and KOH in carbonization of lignocellulosic material”, Journal of Analytical and Applied Pyrolysis, Cilt 83, ss. 151-156.
  • Kirtania, K., Tanner, J., Kabir, K.B., Rajendran, S., Bhattacharya, S., 2014, “In situ synchrotron IR study relating temperature and heating rate to surface functional group changes in biomass”, Bioresource Technology, Cilt 151, ss. 36-42.
  • Kongnoo, A., Intharapat, P., Worathanakul, P., Phalakornkule, C., 2016, “Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperatures”, J. Environ. Chem. Eng., Cilt 4, ss. 73–81.
  • Konstantinovic, S.S., Kodric, M.G., Nicic, R., Djordjevic, D.M., 2019, “Decolorization of model wastewater by adsorbent obtained from waste hemp fibers”, Chem. Ind. Chem. Eng. Q., Cilt 25, Sayı 1, ss. 11-19.
  • Kyzas, G.Z., Terzopoulou, Z., Nikolaidis, V., Alexopoulou, E., Bikiaris, D.N., 2015, “Low-cost hemp biomaterials for nickel ions removal from aqueous solutions”, Journal of Molecular Liquids, Cilt 209, ss. 209-218.
  • Li, Z., Guan, Z., Guan, Z., Liang, C., Yu, K., 2020, “Effect of deep cryogenic activated treatment on hemp stem-derived carbon used as anode for lithium-ion batteries”, Nanoscale Research Letters, Cilt 15, Sayı 1, ss. 1-8.
  • Liu, S., Ge, L., Gao, S., Zhuang, L., Zhu, Z., Wang, H., 2017, “Activated carbon derived from bio-waste hemp hurd and retted hemp hurd for CO2 adsorption”, Composites Communications, Cilt 5, ss. 27-30.
  • Lu, Y., Zhang, S., Yin, J., Bai, C., Zhang, J., Li, Y., Yang, Y., Ge, Z., Zhang, M., Wei, L., 2017, “Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors”, Carbon, Cilt 124, ss. 64–71.
  • Lupul, I., Yperman, J., Carleer, R., Gryglewicz, G., 2015, “Tailoring of porous texture of hemp stem-based activated carbon produced by phosphoric acid activation in steam atmosphere”, J. Porous Mater., Cilt 22, ss. 283-289.
  • Moniruzzaman, M., Ono, T., 2013, “Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment”, Bioresource Technology, Cilt 127, ss. 132-137.
  • Morin-Crini, N., Loiacono, S., Placet, V., Torri, G., Bradu, C., Kostić, M., Crini, G., 2019, “Hemp-based adsorbents for sequestration of metals: a review”, Environmental Chemistry Letters, Cilt 17, Sayı 1, ss. 393-408.
  • Parvez, A. M., Lewis, J. D., Afzal, M. T., 2021, “Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook”, Renewable and Sustainable Energy Reviews, Cilt 141, 110784.
  • Pejic, B., Vukcevic, M., Kostic, M., Skundric, P., 2009, “Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition”, Journal of Hazardous Materials, Cilt 164, ss. 146-153.
  • Puziy, A. M., Poddubnaya, O. I., Martı´nez-Alonso, A., Sua´rez- Garcı´a, F., Tasco´n, J. M. D., 2002, “Synthetic Carbons Activated with Phosphoric Acid. I. Surface Chemistry and Ion Binding Properties”, Carbon, Cilt 40, ss. 1493-1505.
  • Puziy, A. M., Poddubnaya, O. I., Martı´nez-Alonso, A., Sua´rez- Garcı´a, F., Tasco´n, J. M. D., 2005, “Surface Chemistry of Phosphorous-Containing Carbons of Lignocellulosic Origin”, Carbon, Cilt 43, ss. 2857-2868.
  • Romero-Anaya, A.J., Ouzzine, M., Lillo-Ródenas, M.A., Linares-Solano, A., 2014, “Spherical carbons: synthesis, characterization and activation processes”, Carbon, Cilt 68, ss. 296–307.
  • Rosas, J.M., Bedia, J., Rodríguez-Mirasol, J., Cordero, T., 2008, ”Preparation of hemp-derived activated carbon monoliths. adsorption of water vapor”, Ind. Eng. Chem. Res., Cilt 47, ss. 1288-1296.
  • Rosas, J.M., Bedia, J., Rodríguez-Mirasol, J., Cordero, T., 2009, “Hemp-derived activated carbon fibers by chemical activation with phosphoric acid”, Fuel, Cilt 88, ss. 19-26.
  • Srenscek-Nazzal, J., Kaminska, W., Michalkiewicz, B., Koren, Z.C., 2013, “Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses”, Industrial Crops and Products, Cilt 47, ss. 153-159.
  • Tay, T., Ucar, S., Karagöz, S., 2009, “Preparation and characterization of activated carbon from waste biomass”, J. Hazard. Mater., Cilt 165, ss. 481-485.
  • Tofan, L., Teodosiu, C., Paduraru, C., Wenkert, R., 2013, “Cobalt (II) removal from aqueous solutions by natural hemp fibers: Batch and fixed-bed column studies”, Applied Surface Science, Cilt 285, ss. 33-39.
  • Toprakçı, O., Toprakcı, H. A. K., 2021, “Anode Performance of Sustainable, Hemp-derived, Flexible, Binder-free, Carbon Fabrics in Lithium-Ion Batteries”, International Journal of Environment and Geoinformatics, Cilt 8, Sayı 1, ss. 28-32.
  • Vukcevic, M.M., Kalijadis, A., Radisic, M., Pejic, B., Kostic, M., Lausevic, Z., Lausevic, M., 2012, “Application of carbonized hemp fibers as a new solid-phase extraction sorbent for analysis of pesticides in water samples”, Chemical Engineering Journal, Cilt 211-212, ss. 224-232.
  • Vukcevic, M.M., Kalijadis, A.M., Vasiljevic, T.M., Babic, B.M., Lausevic, Z.V., Lausevic, M.D., 2015, “Production of activated carbon derived from waste hemp (Cannabis sativa) fibers and its performance in pesticide adsorption”, Microporous and Mesoporous Materials, Cilt 214, ss. 156-165.
  • Wang, Y., Yang, R., Li, M., Zhao, Z., 2015, “Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications”, Industrial Crops and Products, Cilt 65, ss. 216-226.
  • Xiao, Y., He, D., Peng, W., Chen, S., Liu, J., Chen, H., Bai, Y., 2021, “Oxidized-Polydopamine-Coated Graphene Anodes and N, P Codoped Porous Foam Structure Activated Carbon Cathodes for High-Energy-Density Lithium-Ion Capacitors”, ACS Applied Materials & Interfaces, Cilt 13, Sayı 8, ss. 10336-10348.
  • Yang, M., Kim, D. S., Hong, S. B., Sim, J. W., Kim, J., Kim, S. S., Choi, B. G., 2017, “MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors”, Langmuir, Cilt 33, Sayı 21, ss. 5140-5147.
  • Yang, R., Liu, G., Xu, X., Li, M., Zhang, J., Hao, X., 2011, “Surface texture, chemistry and adsorption properties of acid blue 9 of hemp (Cannabis sativa L.) bast-based activated carbon fibers prepared by phosphoric acid activation”, Biomass and Bioenergy, Cilt 35, ss. 437-445.
  • Yang, R., Liu, G., Xu, X., Li, M., Zhang, J., Hao, X., 2012, “Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem”, Microporous and Mesoporous Materials, Cilt 158, ss. 108-116.
  • Zhang, J., Gao, J., Chen, Y., Hao, X., Jin, X., 2017, “Characterization, preparation, and reaction mechanism of hemp stem based activated carbon”, Results in Physics, Cilt 7, ss. 1628-1633.
  • Zhang, J., Duan, Y., Jiang, Z., Chen, T., Wang, K., Wang, K., Zhang, W., Hu, J., 2021, “Investigation of the supercapacitance of ruthenium-based/hemp stem activated carbon”, Journal of Physics and Chemistry of Solids, 153, 110019.

Carbonization of Hemp Waste and Obtaining Activated Carbon

Year 2022, , 29 - 39, 01.03.2022
https://doi.org/10.36306/konjes.967894

Abstract

In this research, waste parts (root, stem and other) of hemp grown in Malatya Turgut Özal University Faculty of Agriculture were evaluated. Activated carbon was obtained from hemp waste by using carbonization and chemical activation method and characterization experiments were carried out. Elemental (C, H, N, S) analysis, XRD, FTIR and SEM analyzes were performed to determine the characterization of the activated carbon samples. In addition, the surface area and porosity of activated carbons were determined by BET nitrogen adsorption surface area measurement. The total surface area (Stotal) of the carbonized hemp waste is 171.75 m2/g, the micropore area (Smicro) is 145.46 m2/g and the mesopore area (Smezo) is 26.29 m2/g. These values were calculated as 1881.80 m2/g, 1152.40 m2/g and 728.40 m2/g, respectively, inactivated carbon impregnated with KOH at a 1:4 ratio. The pore volume of 0.077 cm3/g in the carbonized product was determined as 0.8852 cm3/g in activated carbon. The average pore diameters (dp) of the carbonized product and activated carbon were determined as 1.78 nm and 1.88 nm, respectively. According to these results, it has been determined that it is possible to obtain activated carbon economically by carbonization and chemical activation of hemp waste.

References

  • Chandra, T.C., Mirna, M.M., Sudaryanto, Y., Ismadji, S., 2007, “Adsorption of basic dye onto activated carbon prepared from durian shell: studies of adsorption equilibrium and kinetics”, Chemical Engineering Journal, Cilt 127, ss. 121–129.
  • Dizbay-Onat, M., Vaidya, U.K., Balanay, J.A.G., Lungu, C.T., 2018, “Preparation and characterization of flax, hemp and sisal fiber-derived mesoporous activated carbon adsorbents”, Adsorption Science and Technology, Cilt 36, Sayı 1-2, ss. 441-457.
  • Fierro, V., Torne-Fernandez, V., Celzard, A., 2006, “Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: Synthesis and textural characterization”, Microporous and Mesoporous Materials, Cilt 92, Sayı 1-3, ss. 243-250.
  • Gao, S., Ge, L., Rufford, T.E., Zhu, Z., 2017, “The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO2, CH4 and N2”, Microporous Mesoporous Mater., Cilt 238, ss. 19–26.
  • Guan, Z., Guan, Z., Li, Z., Liu, J., Yu, K., 2019, “Characterization and preparation of nano-porous carbon derived from hemp stems as anode for lithium-ion batteries”, Nanoscale Research Letters, Cilt 14, Sayı 1, ss. 1-9.
  • Hong, S.M., Choi, S.W., Kim, S.H., Lee, K.B., 2016, “Porous carbon based on polyvinylidene fluoride: enhancement of CO2 adsorption by physical activation”, Carbon, Cilt 99, ss. 354–360.
  • Hossain, M.Z., Wu, W., Xu, W.Z., Chowdhury, M.B.I., Jhawar, A.K., Machin, D., Charpentier, P.A., 2018, “High-Surface-Area Mesoporous Activated Carbon from Hemp Bast Fiber Using Hydrothermal Processing”, Journal of Carbon Research, Cilt 4, Sayı 38, ss. 1-15.
  • Ivanichok, N. Y., Budzuliak, I. M., Moiseienko, M. I., Lisovskiy, R. P., Rachii, B. I., Gamarnyk, A. M., Lisovska, S. A., 2020, “Electrochemical properties of nanoporous carbon materials obtained from raw materials of plant origin (hemp shives)”, Physics and Chemistry of Solid State, Cilt 21, Sayı 1, ss. 35-42.
  • Jiang, X., Shi, G., Wang, G., Mishra, P., Liu, C., Dong, Y., Zhang, H., 2019, “A hydrothermal carbonization process for the preparation of activated carbons from hemp straw: an efficient electrode material for supercapacitor application”, Ionics, Cilt 25, Sayı 7, ss. 3299-3307.
  • Jiang, X., Shi, G., Wang, G., Mishra, P., Du, J., Zhang, Y., 2020, “Fe2O3/hemp straw-based porous carbon composite for supercapacitor electrode materials”, Ionics, Cilt 26, ss. 4039-4051.
  • Jibril, B., Houache, O., Al-Maamari, R., Al-Rashidi, B., 2008, “Effects of H3PO4 and KOH in carbonization of lignocellulosic material”, Journal of Analytical and Applied Pyrolysis, Cilt 83, ss. 151-156.
  • Kirtania, K., Tanner, J., Kabir, K.B., Rajendran, S., Bhattacharya, S., 2014, “In situ synchrotron IR study relating temperature and heating rate to surface functional group changes in biomass”, Bioresource Technology, Cilt 151, ss. 36-42.
  • Kongnoo, A., Intharapat, P., Worathanakul, P., Phalakornkule, C., 2016, “Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperatures”, J. Environ. Chem. Eng., Cilt 4, ss. 73–81.
  • Konstantinovic, S.S., Kodric, M.G., Nicic, R., Djordjevic, D.M., 2019, “Decolorization of model wastewater by adsorbent obtained from waste hemp fibers”, Chem. Ind. Chem. Eng. Q., Cilt 25, Sayı 1, ss. 11-19.
  • Kyzas, G.Z., Terzopoulou, Z., Nikolaidis, V., Alexopoulou, E., Bikiaris, D.N., 2015, “Low-cost hemp biomaterials for nickel ions removal from aqueous solutions”, Journal of Molecular Liquids, Cilt 209, ss. 209-218.
  • Li, Z., Guan, Z., Guan, Z., Liang, C., Yu, K., 2020, “Effect of deep cryogenic activated treatment on hemp stem-derived carbon used as anode for lithium-ion batteries”, Nanoscale Research Letters, Cilt 15, Sayı 1, ss. 1-8.
  • Liu, S., Ge, L., Gao, S., Zhuang, L., Zhu, Z., Wang, H., 2017, “Activated carbon derived from bio-waste hemp hurd and retted hemp hurd for CO2 adsorption”, Composites Communications, Cilt 5, ss. 27-30.
  • Lu, Y., Zhang, S., Yin, J., Bai, C., Zhang, J., Li, Y., Yang, Y., Ge, Z., Zhang, M., Wei, L., 2017, “Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors”, Carbon, Cilt 124, ss. 64–71.
  • Lupul, I., Yperman, J., Carleer, R., Gryglewicz, G., 2015, “Tailoring of porous texture of hemp stem-based activated carbon produced by phosphoric acid activation in steam atmosphere”, J. Porous Mater., Cilt 22, ss. 283-289.
  • Moniruzzaman, M., Ono, T., 2013, “Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment”, Bioresource Technology, Cilt 127, ss. 132-137.
  • Morin-Crini, N., Loiacono, S., Placet, V., Torri, G., Bradu, C., Kostić, M., Crini, G., 2019, “Hemp-based adsorbents for sequestration of metals: a review”, Environmental Chemistry Letters, Cilt 17, Sayı 1, ss. 393-408.
  • Parvez, A. M., Lewis, J. D., Afzal, M. T., 2021, “Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook”, Renewable and Sustainable Energy Reviews, Cilt 141, 110784.
  • Pejic, B., Vukcevic, M., Kostic, M., Skundric, P., 2009, “Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition”, Journal of Hazardous Materials, Cilt 164, ss. 146-153.
  • Puziy, A. M., Poddubnaya, O. I., Martı´nez-Alonso, A., Sua´rez- Garcı´a, F., Tasco´n, J. M. D., 2002, “Synthetic Carbons Activated with Phosphoric Acid. I. Surface Chemistry and Ion Binding Properties”, Carbon, Cilt 40, ss. 1493-1505.
  • Puziy, A. M., Poddubnaya, O. I., Martı´nez-Alonso, A., Sua´rez- Garcı´a, F., Tasco´n, J. M. D., 2005, “Surface Chemistry of Phosphorous-Containing Carbons of Lignocellulosic Origin”, Carbon, Cilt 43, ss. 2857-2868.
  • Romero-Anaya, A.J., Ouzzine, M., Lillo-Ródenas, M.A., Linares-Solano, A., 2014, “Spherical carbons: synthesis, characterization and activation processes”, Carbon, Cilt 68, ss. 296–307.
  • Rosas, J.M., Bedia, J., Rodríguez-Mirasol, J., Cordero, T., 2008, ”Preparation of hemp-derived activated carbon monoliths. adsorption of water vapor”, Ind. Eng. Chem. Res., Cilt 47, ss. 1288-1296.
  • Rosas, J.M., Bedia, J., Rodríguez-Mirasol, J., Cordero, T., 2009, “Hemp-derived activated carbon fibers by chemical activation with phosphoric acid”, Fuel, Cilt 88, ss. 19-26.
  • Srenscek-Nazzal, J., Kaminska, W., Michalkiewicz, B., Koren, Z.C., 2013, “Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses”, Industrial Crops and Products, Cilt 47, ss. 153-159.
  • Tay, T., Ucar, S., Karagöz, S., 2009, “Preparation and characterization of activated carbon from waste biomass”, J. Hazard. Mater., Cilt 165, ss. 481-485.
  • Tofan, L., Teodosiu, C., Paduraru, C., Wenkert, R., 2013, “Cobalt (II) removal from aqueous solutions by natural hemp fibers: Batch and fixed-bed column studies”, Applied Surface Science, Cilt 285, ss. 33-39.
  • Toprakçı, O., Toprakcı, H. A. K., 2021, “Anode Performance of Sustainable, Hemp-derived, Flexible, Binder-free, Carbon Fabrics in Lithium-Ion Batteries”, International Journal of Environment and Geoinformatics, Cilt 8, Sayı 1, ss. 28-32.
  • Vukcevic, M.M., Kalijadis, A., Radisic, M., Pejic, B., Kostic, M., Lausevic, Z., Lausevic, M., 2012, “Application of carbonized hemp fibers as a new solid-phase extraction sorbent for analysis of pesticides in water samples”, Chemical Engineering Journal, Cilt 211-212, ss. 224-232.
  • Vukcevic, M.M., Kalijadis, A.M., Vasiljevic, T.M., Babic, B.M., Lausevic, Z.V., Lausevic, M.D., 2015, “Production of activated carbon derived from waste hemp (Cannabis sativa) fibers and its performance in pesticide adsorption”, Microporous and Mesoporous Materials, Cilt 214, ss. 156-165.
  • Wang, Y., Yang, R., Li, M., Zhao, Z., 2015, “Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications”, Industrial Crops and Products, Cilt 65, ss. 216-226.
  • Xiao, Y., He, D., Peng, W., Chen, S., Liu, J., Chen, H., Bai, Y., 2021, “Oxidized-Polydopamine-Coated Graphene Anodes and N, P Codoped Porous Foam Structure Activated Carbon Cathodes for High-Energy-Density Lithium-Ion Capacitors”, ACS Applied Materials & Interfaces, Cilt 13, Sayı 8, ss. 10336-10348.
  • Yang, M., Kim, D. S., Hong, S. B., Sim, J. W., Kim, J., Kim, S. S., Choi, B. G., 2017, “MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors”, Langmuir, Cilt 33, Sayı 21, ss. 5140-5147.
  • Yang, R., Liu, G., Xu, X., Li, M., Zhang, J., Hao, X., 2011, “Surface texture, chemistry and adsorption properties of acid blue 9 of hemp (Cannabis sativa L.) bast-based activated carbon fibers prepared by phosphoric acid activation”, Biomass and Bioenergy, Cilt 35, ss. 437-445.
  • Yang, R., Liu, G., Xu, X., Li, M., Zhang, J., Hao, X., 2012, “Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem”, Microporous and Mesoporous Materials, Cilt 158, ss. 108-116.
  • Zhang, J., Gao, J., Chen, Y., Hao, X., Jin, X., 2017, “Characterization, preparation, and reaction mechanism of hemp stem based activated carbon”, Results in Physics, Cilt 7, ss. 1628-1633.
  • Zhang, J., Duan, Y., Jiang, Z., Chen, T., Wang, K., Wang, K., Zhang, W., Hu, J., 2021, “Investigation of the supercapacitance of ruthenium-based/hemp stem activated carbon”, Journal of Physics and Chemistry of Solids, 153, 110019.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Aydan Aksoğan Korkmaz 0000-0002-3309-9719

Yunus Önal 0000-0001-6342-6816

Publication Date March 1, 2022
Submission Date July 8, 2021
Acceptance Date December 15, 2021
Published in Issue Year 2022

Cite

IEEE A. Aksoğan Korkmaz and Y. Önal, “KENEVİR ATIKLARININ KARBONİZASYONU VE AKTİF KARBON ELDESİ”, KONJES, vol. 10, no. 1, pp. 29–39, 2022, doi: 10.36306/konjes.967894.