Research Article
BibTex RIS Cite

ZnO konsantrasyonunun organik güneş hücrelerinde verime etkisi

Year 2021, , 10 - 16, 30.12.2021
https://doi.org/10.36306/konjes.972477

Abstract

Bu çalışmada, sol-jel yöntemi ile sentezlenmiş ZnO molaritesinin P3HT (Poli (3-hekzil tiyofen)):PCBM ((6,6) Fenil-C61-Bütirik asit metil ester) aktif tabakalı güneş hücresinde verime olan etkisi incelenmiş ve 0,1, 0,3 ve 0,5 M değerlerinde çalışılmıştır. Aygıtların verim değerleri, 100 mw/cm2 güneş ışıması altında Keithley 2400 kaynak ölçer cihazı yardımı ile belirlenmiştir. Ayrıca XRD, UV-Vis ve FESEM teknikleri ile karakterizasyon işlemleri gerçekleştirilmiştir. Yapılan çalışmalar sonrasında 0,1 M sentez konsantrasyonunun, en uygun koşul olduğu bulunmuş ve bu şartlarda üretilen aygıt ile %3,09 verime ulaşılabildiği tespit edilmiştir.

References

  • Afzali, M., Mostafavi, A., Shamspur, T., 2020, “Performance enhancement of perovskite solar cells by rhenium doping in nano-TiO2 compact layer”, Organic Electronics, 86, 105907.
  • Biswas, C., Ma, Z., Zhu, X., Kawaharamura, T., Wang, K. L., 2016, “Atmospheric growth of hybrid ZnO thin films for inverted polymer solar cells”, Solar Energy Materials &Solar Cells Cells (Sol. Energ. Mater. Sol. C.), 157, 1048-1056.
  • Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., Snaith, H. J., 2013, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates”, Nature Communications (Nat. Commun), 4, 2761, 1-6.
  • Fanady, B., Song, W., Peng, R., Wu, T., Ge, Z., 2020, “Efficiency enhancement of organic solar cells enabled by interface engineering of sol-gel zinc oxide with an oxadiazole-based material”, Organic Electronics, 76, 105483.
  • Guan, H., Xu, W., Li, X., Peng, H., Feng, Y., Zhang, J., Li, C., 2016, “Implementation of photo thermal annealing on ZnO electron transporting layer for high performance inverted polymer solar cells”, Materials Letters, 163, 69-71.
  • Gui, Z. Z., Liu, X. H., Ming, S. Q., Zhang, J., Y., Xie, Q. M., Chen, T., Wang, H. Q., 2018, “Efficient organic solar cells employing ytterbium ion-doped zinc oxide as cathode transporting layer”, Organic Electronics, 53, 296-302.
  • Hoye, R. L. Z., Munoz-Rojas, D., Iza, D. C., Musselman, K., P., MacManus-Driscoll, J. L., 2013, “High performance inverted bulk heterojunction solar cells by incorporation of dense, thin ZnO layers made using atmospheric atomic layer deposition”, Solar Energy Materials & Solar Cells (Sol. Energ. Mater. Sol. C.), 116, 197-202.
  • Lattante, S., 2014, “Electron and hole transport layers: Their use in inverted bulk heterojunction polymer solar cells”, Electronics, 3, 1, 132-164.
  • Li, S., Zhu, X., Wang, B., Qiao, Y., Liu, W., Yang, H., Liu, N., Chen, M., Lu, H., Yang, Y., 2018, “Influence of Ag Nanoparticles with Different Sizes and Concentrations Embedded in a TiO2 Compact Layer on the Conversion Efficiency of Perovskite Solar Cells”, Nanoscale Research Letters, 13, 210, 1-11.
  • Liang, Z., Zhang, Q., Wiranwetchayan, O., Xi, J., Yang, Z., Park, K., Li, C., Cao, G., 2012, “Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells”, Advanced Functional Materials (Adv. Funct. Mater.), 22, 10, 2194-2201.
  • Lin, C. C., Tsai, S. K., Chang, M. Y., 2017, “Spontaneous growth by sol-gel process of low temperature ZnO as cathode buffer layer in flexible inverted organic solar cells”, Organic Electronics, 43, 218-225.
  • Lin, Z., Chang, J., Jiang, C., Zhang, J., Wu, J., Zhu, C., 2014, “Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers”, RSC Advances, 4, 6646-6651.
  • Ma, Z. S., Wang, Q. K., Li, C., Li, Y. Q., Zhang, D. D., Liu, W., Wang, P., Tang, J. T., 2015, “Efficient inverted polymer solar cells integrated with a compound electron extraction layer”, Optics Communications, 356, 541-545.
  • Pacholski, C., Kornowski, A., Weller, H., 2002, “Self-Assembly of ZnO: From Nanodots to Nanorods”, Angewandte Chemie International Edition (Angew. Chem. Int. Ed.), 41, 7, 1188-1191.
  • Ragoussi, M. E. ve Torres, T., 2015, “New generation solar cells: concepts, trends and perspectives”, Chemical Communications (ChemComm), 51, 3957-3972.
  • Sun, Y., Seo, J. H., Takacs, C. J., Seifter J., Heeger, A., 2011, “Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer”, Advanced Materials (Adv. Mater.), 23, 1679-1683.
  • Wang, X., Zhang, Z., Qin, J., Shi, W., Liu, Y., Gao, H., Mao, Y., 2017, “Enhanced Photovoltaic Performance of Perovskite Solar Cells Based on Er-Yb Co-doped TiO2 Nanorod Arrays”, Electrochimica Acta, 245, 839-845.
  • Wei, W., Zhang, C., Chen, D., Wang, Z., Zhu, C., Zhang, J., Lu, X., Hao, Y., 2013, “Efficient “Light-soaking”-free Inverted Organic Solar Cells with Aqueous Solution Processed Low-Temperature ZnO Electron Extraction Layers”, ACS Applied Materials & Interfaces (ACS Appl. Mater. Interfaces), 5, 13318-13324.
  • Xia, X., Bian, Z., Huang, C., 2015, “Overcoming the thickness paradox: Systematical optimization of inverted polymer solar cells”, Current Applied Physics, 15, 1364-1369.
  • Zafar, M, Yun, J. Y., Kim, D. H., 2019, “Improved inverted-organic-solar-cell performance via sulfur doping of ZnO films as electron buffer layer”, Materials Science in Semiconductor Processing, 96, 66-72.
  • Zhu, Y., Yuan, Z., Cui, W., Wu, Z., Sun, Q., Wang, S., Kang, Z., Sun, B., 2014, “A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells”, Journal of Materials Chemistry A, (J. Mater. Chem. A), 2, 1436-1442.

Effect of ZnO Concentration on Efficiency in Organic Solar Cells

Year 2021, , 10 - 16, 30.12.2021
https://doi.org/10.36306/konjes.972477

Abstract

In this study, the effect of the molarity of ZnO synthesized by the sol-gel method on the efficiency of P3HT (Poly (3-hexyl thiophene)):PCBM ((6,6) Phenyl-C61-Butyric acid methyl ester) active layer solar cell was investigated. It was studied at 0.1, 0.3 and 0.5 M values. The efficiency values of the devices were determined with the Keithley 2400 source meter under 100 mw/cm2 solar radiation. In addition, characterization processes were carried out with XRD, UV-Vis and FESEM techniques. After the studies, it was found that 0.1 M synthesis concentration was the most suitable condition and it was determined that 3.09% efficiency could be reached with the device produced under these conditions.

References

  • Afzali, M., Mostafavi, A., Shamspur, T., 2020, “Performance enhancement of perovskite solar cells by rhenium doping in nano-TiO2 compact layer”, Organic Electronics, 86, 105907.
  • Biswas, C., Ma, Z., Zhu, X., Kawaharamura, T., Wang, K. L., 2016, “Atmospheric growth of hybrid ZnO thin films for inverted polymer solar cells”, Solar Energy Materials &Solar Cells Cells (Sol. Energ. Mater. Sol. C.), 157, 1048-1056.
  • Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., Snaith, H. J., 2013, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates”, Nature Communications (Nat. Commun), 4, 2761, 1-6.
  • Fanady, B., Song, W., Peng, R., Wu, T., Ge, Z., 2020, “Efficiency enhancement of organic solar cells enabled by interface engineering of sol-gel zinc oxide with an oxadiazole-based material”, Organic Electronics, 76, 105483.
  • Guan, H., Xu, W., Li, X., Peng, H., Feng, Y., Zhang, J., Li, C., 2016, “Implementation of photo thermal annealing on ZnO electron transporting layer for high performance inverted polymer solar cells”, Materials Letters, 163, 69-71.
  • Gui, Z. Z., Liu, X. H., Ming, S. Q., Zhang, J., Y., Xie, Q. M., Chen, T., Wang, H. Q., 2018, “Efficient organic solar cells employing ytterbium ion-doped zinc oxide as cathode transporting layer”, Organic Electronics, 53, 296-302.
  • Hoye, R. L. Z., Munoz-Rojas, D., Iza, D. C., Musselman, K., P., MacManus-Driscoll, J. L., 2013, “High performance inverted bulk heterojunction solar cells by incorporation of dense, thin ZnO layers made using atmospheric atomic layer deposition”, Solar Energy Materials & Solar Cells (Sol. Energ. Mater. Sol. C.), 116, 197-202.
  • Lattante, S., 2014, “Electron and hole transport layers: Their use in inverted bulk heterojunction polymer solar cells”, Electronics, 3, 1, 132-164.
  • Li, S., Zhu, X., Wang, B., Qiao, Y., Liu, W., Yang, H., Liu, N., Chen, M., Lu, H., Yang, Y., 2018, “Influence of Ag Nanoparticles with Different Sizes and Concentrations Embedded in a TiO2 Compact Layer on the Conversion Efficiency of Perovskite Solar Cells”, Nanoscale Research Letters, 13, 210, 1-11.
  • Liang, Z., Zhang, Q., Wiranwetchayan, O., Xi, J., Yang, Z., Park, K., Li, C., Cao, G., 2012, “Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells”, Advanced Functional Materials (Adv. Funct. Mater.), 22, 10, 2194-2201.
  • Lin, C. C., Tsai, S. K., Chang, M. Y., 2017, “Spontaneous growth by sol-gel process of low temperature ZnO as cathode buffer layer in flexible inverted organic solar cells”, Organic Electronics, 43, 218-225.
  • Lin, Z., Chang, J., Jiang, C., Zhang, J., Wu, J., Zhu, C., 2014, “Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers”, RSC Advances, 4, 6646-6651.
  • Ma, Z. S., Wang, Q. K., Li, C., Li, Y. Q., Zhang, D. D., Liu, W., Wang, P., Tang, J. T., 2015, “Efficient inverted polymer solar cells integrated with a compound electron extraction layer”, Optics Communications, 356, 541-545.
  • Pacholski, C., Kornowski, A., Weller, H., 2002, “Self-Assembly of ZnO: From Nanodots to Nanorods”, Angewandte Chemie International Edition (Angew. Chem. Int. Ed.), 41, 7, 1188-1191.
  • Ragoussi, M. E. ve Torres, T., 2015, “New generation solar cells: concepts, trends and perspectives”, Chemical Communications (ChemComm), 51, 3957-3972.
  • Sun, Y., Seo, J. H., Takacs, C. J., Seifter J., Heeger, A., 2011, “Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer”, Advanced Materials (Adv. Mater.), 23, 1679-1683.
  • Wang, X., Zhang, Z., Qin, J., Shi, W., Liu, Y., Gao, H., Mao, Y., 2017, “Enhanced Photovoltaic Performance of Perovskite Solar Cells Based on Er-Yb Co-doped TiO2 Nanorod Arrays”, Electrochimica Acta, 245, 839-845.
  • Wei, W., Zhang, C., Chen, D., Wang, Z., Zhu, C., Zhang, J., Lu, X., Hao, Y., 2013, “Efficient “Light-soaking”-free Inverted Organic Solar Cells with Aqueous Solution Processed Low-Temperature ZnO Electron Extraction Layers”, ACS Applied Materials & Interfaces (ACS Appl. Mater. Interfaces), 5, 13318-13324.
  • Xia, X., Bian, Z., Huang, C., 2015, “Overcoming the thickness paradox: Systematical optimization of inverted polymer solar cells”, Current Applied Physics, 15, 1364-1369.
  • Zafar, M, Yun, J. Y., Kim, D. H., 2019, “Improved inverted-organic-solar-cell performance via sulfur doping of ZnO films as electron buffer layer”, Materials Science in Semiconductor Processing, 96, 66-72.
  • Zhu, Y., Yuan, Z., Cui, W., Wu, Z., Sun, Q., Wang, S., Kang, Z., Sun, B., 2014, “A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells”, Journal of Materials Chemistry A, (J. Mater. Chem. A), 2, 1436-1442.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Semih Yurtdaş 0000-0002-5556-2196

Mustafa Karaman 0000-0001-8987-4246

Cem Tozlu 0000-0003-4192-5512

Publication Date December 30, 2021
Submission Date July 26, 2021
Acceptance Date October 31, 2021
Published in Issue Year 2021

Cite

IEEE S. Yurtdaş, M. Karaman, and C. Tozlu, “ZnO konsantrasyonunun organik güneş hücrelerinde verime etkisi”, KONJES, vol. 9, pp. 10–16, 2021, doi: 10.36306/konjes.972477.