Research Article
BibTex RIS Cite

KALP HASTALIĞI TEŞHİSİNDE YAPAY ZEKÂ YÖNTEMLERİNİN KULLANIMI VE KARŞILAŞTIRILMASI

Year 2022, , 396 - 411, 01.06.2022
https://doi.org/10.36306/konjes.975696

Abstract

Günümüzde insan ölümlerinin önemli bir kısmı kalp hastalıkları kaynaklıdır. Bu tür hastalıklar erken teşhis ile tedavi edildiğinde belirtilen ölüm oranları ciddi bir şekilde azalabilmektedir. Bu çalışmada Cleveland ve Z-Alizadehsani veri kümeleri için yapay zeka teknikleriyle kalp hastalığı teşhisi uygulamaları gerçekleştirilmiştir. Cleveland veri kümesi için yaş, cinsiyet, göğüs ağrı türü, kan basıncı, kolesterol, kan şekeri, elektrokardiyografi sonucu, en yüksek kalp atış hızı, indüklenen göğüs ağrısı, eski zirve, eğim, majör damar sayısı, tal isimleriyle ifade edilen 13 özellik yapay zeka tabanlı erken teşhis sistemine girdi özellikler olarak verilmiştir. Z-Alizadehsani veri kümesi için ise veritabanında bulunan 55 özelliğin tamamı aynı yapay zeka sistemine girdi özellik olarak kullanılmıştır. Önerilen yapay zeka sisteminde Naive-Bayes, Lineer Regresyon, Polinomiyal Regresyon, Destek Vektör Makinası (DVM) gibi basit sınıflandırıcıların yanı sıra bir topluluk sınıflandırma yaklaşımı olan Rassal Orman ve Yapay Sinir Ağı tabanlı Çok Katmanlı Algılayıcı (ÇKA) kullanılmıştır. Yapılan deneylerde 10 K katlama ve Bekletme (20 çalıştırma) çapraz doğrulama yöntemleri kullanılmıştır. Çoklu Lineer Regresyon yaklaşımı bekletme yöntemiyle Cleveland veri kümesi için 0.90’a kadar doğruluk değeri üretirken Z-Alizadehsani veri kümesi için 0.91’e kadar doğruluk değeri üretmiştir. K katlama çapraz doğrulama yöntemi uygulandığında ise bu değerler iki veri kümesi için de 0.93’e kadar doğruluk oranına ulaşmıştır. DVM yöntemi Cleveland veri kümesi için K katlama yöntemiyle 0.97 doğruluk oranıyla en yüksek sonucu vermiştir. Genel olarak K katlama yönteminin Bekletme yöntemine göre daha başarılı sonuçlar ürettiği gözlemlenmiştir. Deneylerin detaylı sonuçları ve literatürde yapılan çalışmlarla karşılaştırmalı sonuçları çizelgelerde verilmiştir. Çalışmada kullanılan modeller Türkiye’deki hastane otomasyonları gibi sistemlere entegre edilerek hastalıkların erken ve doğru teşhis edilmesi sağlanabilecektir. Önerilen sistem, ideale yakın bir düzeyde geliştirildiğinde sürekli öğrenen bir web servis olarak hastanelerin otomasyon sistemlerine sunulabilecektir.

References

  • Alizadehsani, R., Habibi, J., Hosseini, M. J., Mashayekhi, H., Boghrati, R., Ghandeharioun, A., Bahadorian, B., Sani, Z. A., 2013, “A data mining approach for diagnosis of coronary artery disease”, Computer Methods and Programs in Biomedicine, Cilt 111, Sayı 1, ss. 52-61.
  • Alizadehsani, Z., Alizadehsani, R., Roshanzamir, M., , 2017, Z-Alizadeh Sani Data Set, https://archive.ics.uci.edu/ml/datasets/Z-Alizadeh+Sani, ziyaret tarihi: 24 Ekim 2021
  • Alkhodari, M., Fraiwan, L., 2021, “Convolutional and recurrent neural networks for the detection of valvular heard diseases in phonocardiogram recordings”, Computer Methods and Programs in Biomedicine, Cilt 200.
  • Akalın, B., Veranyurt, Ü., Veranyurt, O., 2020, “Classification of individuals at risk of heart disease using machine learning”, Cumhuriyet Medical Journal, Cilt 42, Sayı 3, ss. 283-289.
  • Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., Yarifard, A. A., 2017, “Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm”, Computer Methods and Programs in Biomedicine, Cilt 141, ss. 19-26.
  • Ayon, S. I., Islam, M. M., Hossain, M. R., 2020, “Coronary artery heart disease prediction: a comparative study of computational intelligence techniques”, IETE Journal of Research, ss. 1-20.
  • Chen, A. H., Huang, S. Y., Hong, P. S., Cheng, C. H., Lin, E. J., 2011, “HDPS: Heart disease prediction system”, 2011 computing in cardiology, IEEE, ss. 557-560.
  • Cristianini, N., Shawe-Taylor, J., 2000, An introduction to support vector machines and other kernel-based learning methods, Cambridge university press.
  • Dutta, A., Batabyal, T., Basu, M., Acton, S. T., 2020, “An efficient convolutional neural network for coronary heart disease prediction”, Expert Systems with Applications, Cilt 159.
  • Ekrem, Ö., Musleh Salman, O. K., Aksoy, B., İnan, S. A., 2020, “Yapay Zeka Yöntemleri Kullanılarak Kalp Hastalığının Tespiti”, Journal of Engineering Sciences and Design, Cilt 8, Sayı 5, ss. 241-254.
  • Fadlil, A., Riadi, I., Aji, S., 2017, “Ddos attacks classification using numeric attribute-based gaussian naive bayes”, International Journal of Advanced Computer Science and Applications (IJACSA), Cilt 8, sayı 8, ss. 42-50.
  • Friedman, N., Geiger, D., Goldszmidt, M., 1997, “Bayesian network classifiers”, Machine learning, Cilt 29, Sayı 2, ss. 131-163.
  • Ghahramani, Z., 2003, “Unsupervised learning”, Summer School on Machine Learning, Berlin, Springer, ss. 72-112.
  • Gupta, A., Arora, H. S., Kumar, R., Raman, B., 2021, “DMHZ: A Decision Support System Based on Machine Computational Design for Heart Disease Diagnosis Using Z-Alizadeh Sani Dataset”, IEEE International Conference on Information Networking (ICOIN), ss. 818-823.
  • Hornik, K., Stinchcombe, M., White, H., 1989, “Multilayer feedforward networks are universal approximators”, Neural Networks, Cilt 2, ss. 359-366.
  • Hsieh, N. C., Hung, L. P., Shih, C. C., Keh, H. C., Chan, C. H., 2012, “Intelligent Postoperative Morbidity Prediction of Heart Disease Using Artificial Intelligence Techniques”, Journal of Medical Systems, Cilt 36, Sayı 3, ss. 1809-1820.
  • Jain, A. K., Mao J., Mohiuddin, K. M, 1996, “Artificial neural networks: A tutorial”, Computer, Cilt 29, Sayı 3, ss. 31-44.
  • Janosi, A., Steinbrunn, W., Pfisterer, M., Detrano, R., 1988, Heart Disease Data Set, https://archive.ics.uci.edu/ml/datasets/heart+disease, ziyaret tarihi: 7 Ağustos 2021.
  • Kibriya, A. M., Frank, E., Pfahringer, B., Holmes, G., 2004, “Multinomial naive bayes for text categorization revisited”,Australasian Joint Conference on Artificial Intelligence, Berlin.
  • Kolukısa, B., Hacılar, H., Kuş, M., Bakır-Güngör, B., Aral, A., Güngör, V. Ç., 2019, “Diagnosis of coronary heart disease via classification algorithms and a new feature selection methodology”, International Journal of Data Mining Science, Cilt 1, Sayı 1, ss. 8-15.
  • Kotsiantis, S. B., Zaharakis, I., Pintelas, P., 2007, “Supervised machine learning: A review of classification techniques”, Emerging artificial intelligence applications in computer engineering, IOS Press, ss. 3-24.
  • Masih, N., Naz, H., Ahuja, S., 2021, “Multilayer perceptron based deep neural network for early detection of coronary heart disease”, Health And Technology, Cilt 11, ss. 127-138.
  • Mienye, I. D., Sun, Y., Wang, Z., 2020, “An improved ensemble learning approach for the prediction of heart disease risk”, Informatics in Medicine Unlocked, Cilt 20.
  • Mohan, S., Thirumalai, C., Srivastava, G., 2019, “Effective heart disease prediction using hybrid machine learning techniques”, IEEE Access, Cilt 7, ss. 81542-81554.
  • Oshiro, T. M., Perez, P. S., Baranauskas, J. A., 2012, “How many trees in a random forest?”, International workshop on machine learning and data mining in pattern recognition, Berlin.
  • Ostertagova, E., 2012, “Modelling using polynomial regression”, Procedia Engineering, ss. 500-506.
  • Qi, Z., Zuoru, Z., 2021, “A hybrid cost-sensitive ensemble for heart disease prediction”, BMC Medical Informatics and Decision Making, Cilt 21, Sayı 1, ss. 1-18.
  • Raschka, S., 2014, “Naive bayes and text classification i-introduction and theory”, arXiv preprint.
  • Rosenblatt, F., 1958, “The perceptron: A probabilistic model for information storage and organization in the brain”, Psychoanalytic, ss. 386-408,.
  • Safavian, S. R., Landgrebe, D., 1991, “A survey of decision tree classifier methodology”, IEEE transactions on systems, man, and cybernetics, Cilt 21, Sayı 3, ss. 660-674.
  • Seber, G. A. F., Lee, A. J., 2012, Linear Regression Analysis, John Wiley & Sons.
  • Shorewala, V., 2021, “Early detection of coronary heart disease using ensemble techniques”, Informatics in Medicine Unlocked, pp. Pre-proof.
  • Smets, P., 1993, “Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem”, International Journal of approximate reasoning, Cilt 9, Sayı 1, ss. 1-35.
  • Sokolova, M., Lapalme, G., 2009, “A systematic analysis of performance measures for classification tasks”, Information Processing and Management, Cilt 45, ss. 427–437.
  • Tabachnick, B. G., Fidell, L. S., Ullman, J. B., 2007, Using multivariate statistics, Boston: MA: Pearson. TÜİK, Ölüm ve Ölüm Nedeni İstatistikleri, 2019, https://data.tuik.gov.tr/Bulten/Index?p=Olum-ve-Olum-Nedeni-Istatistikleri-2019-33710, ziyaret tarihi: 07 Ağustos 2021.
  • Yar, M., Muhammad, T. , Maqsood H., Kil To, C., 2020, “Early and accurate detection and diagnosis of heart disease using intelligent computational model”, Scientific Reports, Cilt 10, Sayı 1.
  • Zhao, M. J., Edakunni, N., Pocock, A., & Brown, G, 2013, “Beyond Fano's inequality: Bounds on the optimal F-score, BER, and cost-sensitive risk and their implications”, The Journal of Machine Learning Research, Cilt 14, Sayı 1, ss. 1033-1090.

The Utilization and Comparison of Artificial Intelligence Methods in the Diagnosis of Cardiac Disease

Year 2022, , 396 - 411, 01.06.2022
https://doi.org/10.36306/konjes.975696

Abstract

Today a significant amount of human mortality is because of cardiac disease. These mortality could be reduced considerably by diagnosis on early stages. In this study we propose an artificial intelligence based early diagnosis system for cardiac disease prediction. For the research we utilized Cleveland and Z-Alizadehsani datasets. For Cleveland database which contains 76 attributes, 13 attributes selected in order to predict heart disease presence. For Z-Alizadehsani database which contains 55 attributes, all attributes are utilized for prediction. System implements not only basic classifiers as Naïve-Bayes, Linear Regression, Polynomial Regression, Support Vector Machine (SVM) but also ensemble classifer Random Forest and complex models like artificial neural network based multilayer perceptron. On cardiac disease prediction two cross validation techniques employed. Firstly 20 experiments processed for each method by utilizing holdout cross validation technique. Secondly K-fold (10 fold) cross validation is applied for all methods. Multiple Linear Regression with holdout cross validation has achieved best results as 0.91 accuracy for Cleveland dataset and 0.91 for Z-Alizadehsani dataset. For these two datasets when K fold is utilized 0.93 accuracy score achieved for both. Best result is obtained as 0.97 accuracy by SVM method with Z-Alizadehsani dataset. Generally it is observed that K fold method has better results than Holdout method. Detailed and comparable results of experiments are given in tables. Illnesses could be detected correctly in early phases by integrating these models to health systems like hospital otomations. The proposed system could be presented as continous learning web service to health automation systems.

References

  • Alizadehsani, R., Habibi, J., Hosseini, M. J., Mashayekhi, H., Boghrati, R., Ghandeharioun, A., Bahadorian, B., Sani, Z. A., 2013, “A data mining approach for diagnosis of coronary artery disease”, Computer Methods and Programs in Biomedicine, Cilt 111, Sayı 1, ss. 52-61.
  • Alizadehsani, Z., Alizadehsani, R., Roshanzamir, M., , 2017, Z-Alizadeh Sani Data Set, https://archive.ics.uci.edu/ml/datasets/Z-Alizadeh+Sani, ziyaret tarihi: 24 Ekim 2021
  • Alkhodari, M., Fraiwan, L., 2021, “Convolutional and recurrent neural networks for the detection of valvular heard diseases in phonocardiogram recordings”, Computer Methods and Programs in Biomedicine, Cilt 200.
  • Akalın, B., Veranyurt, Ü., Veranyurt, O., 2020, “Classification of individuals at risk of heart disease using machine learning”, Cumhuriyet Medical Journal, Cilt 42, Sayı 3, ss. 283-289.
  • Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., Yarifard, A. A., 2017, “Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm”, Computer Methods and Programs in Biomedicine, Cilt 141, ss. 19-26.
  • Ayon, S. I., Islam, M. M., Hossain, M. R., 2020, “Coronary artery heart disease prediction: a comparative study of computational intelligence techniques”, IETE Journal of Research, ss. 1-20.
  • Chen, A. H., Huang, S. Y., Hong, P. S., Cheng, C. H., Lin, E. J., 2011, “HDPS: Heart disease prediction system”, 2011 computing in cardiology, IEEE, ss. 557-560.
  • Cristianini, N., Shawe-Taylor, J., 2000, An introduction to support vector machines and other kernel-based learning methods, Cambridge university press.
  • Dutta, A., Batabyal, T., Basu, M., Acton, S. T., 2020, “An efficient convolutional neural network for coronary heart disease prediction”, Expert Systems with Applications, Cilt 159.
  • Ekrem, Ö., Musleh Salman, O. K., Aksoy, B., İnan, S. A., 2020, “Yapay Zeka Yöntemleri Kullanılarak Kalp Hastalığının Tespiti”, Journal of Engineering Sciences and Design, Cilt 8, Sayı 5, ss. 241-254.
  • Fadlil, A., Riadi, I., Aji, S., 2017, “Ddos attacks classification using numeric attribute-based gaussian naive bayes”, International Journal of Advanced Computer Science and Applications (IJACSA), Cilt 8, sayı 8, ss. 42-50.
  • Friedman, N., Geiger, D., Goldszmidt, M., 1997, “Bayesian network classifiers”, Machine learning, Cilt 29, Sayı 2, ss. 131-163.
  • Ghahramani, Z., 2003, “Unsupervised learning”, Summer School on Machine Learning, Berlin, Springer, ss. 72-112.
  • Gupta, A., Arora, H. S., Kumar, R., Raman, B., 2021, “DMHZ: A Decision Support System Based on Machine Computational Design for Heart Disease Diagnosis Using Z-Alizadeh Sani Dataset”, IEEE International Conference on Information Networking (ICOIN), ss. 818-823.
  • Hornik, K., Stinchcombe, M., White, H., 1989, “Multilayer feedforward networks are universal approximators”, Neural Networks, Cilt 2, ss. 359-366.
  • Hsieh, N. C., Hung, L. P., Shih, C. C., Keh, H. C., Chan, C. H., 2012, “Intelligent Postoperative Morbidity Prediction of Heart Disease Using Artificial Intelligence Techniques”, Journal of Medical Systems, Cilt 36, Sayı 3, ss. 1809-1820.
  • Jain, A. K., Mao J., Mohiuddin, K. M, 1996, “Artificial neural networks: A tutorial”, Computer, Cilt 29, Sayı 3, ss. 31-44.
  • Janosi, A., Steinbrunn, W., Pfisterer, M., Detrano, R., 1988, Heart Disease Data Set, https://archive.ics.uci.edu/ml/datasets/heart+disease, ziyaret tarihi: 7 Ağustos 2021.
  • Kibriya, A. M., Frank, E., Pfahringer, B., Holmes, G., 2004, “Multinomial naive bayes for text categorization revisited”,Australasian Joint Conference on Artificial Intelligence, Berlin.
  • Kolukısa, B., Hacılar, H., Kuş, M., Bakır-Güngör, B., Aral, A., Güngör, V. Ç., 2019, “Diagnosis of coronary heart disease via classification algorithms and a new feature selection methodology”, International Journal of Data Mining Science, Cilt 1, Sayı 1, ss. 8-15.
  • Kotsiantis, S. B., Zaharakis, I., Pintelas, P., 2007, “Supervised machine learning: A review of classification techniques”, Emerging artificial intelligence applications in computer engineering, IOS Press, ss. 3-24.
  • Masih, N., Naz, H., Ahuja, S., 2021, “Multilayer perceptron based deep neural network for early detection of coronary heart disease”, Health And Technology, Cilt 11, ss. 127-138.
  • Mienye, I. D., Sun, Y., Wang, Z., 2020, “An improved ensemble learning approach for the prediction of heart disease risk”, Informatics in Medicine Unlocked, Cilt 20.
  • Mohan, S., Thirumalai, C., Srivastava, G., 2019, “Effective heart disease prediction using hybrid machine learning techniques”, IEEE Access, Cilt 7, ss. 81542-81554.
  • Oshiro, T. M., Perez, P. S., Baranauskas, J. A., 2012, “How many trees in a random forest?”, International workshop on machine learning and data mining in pattern recognition, Berlin.
  • Ostertagova, E., 2012, “Modelling using polynomial regression”, Procedia Engineering, ss. 500-506.
  • Qi, Z., Zuoru, Z., 2021, “A hybrid cost-sensitive ensemble for heart disease prediction”, BMC Medical Informatics and Decision Making, Cilt 21, Sayı 1, ss. 1-18.
  • Raschka, S., 2014, “Naive bayes and text classification i-introduction and theory”, arXiv preprint.
  • Rosenblatt, F., 1958, “The perceptron: A probabilistic model for information storage and organization in the brain”, Psychoanalytic, ss. 386-408,.
  • Safavian, S. R., Landgrebe, D., 1991, “A survey of decision tree classifier methodology”, IEEE transactions on systems, man, and cybernetics, Cilt 21, Sayı 3, ss. 660-674.
  • Seber, G. A. F., Lee, A. J., 2012, Linear Regression Analysis, John Wiley & Sons.
  • Shorewala, V., 2021, “Early detection of coronary heart disease using ensemble techniques”, Informatics in Medicine Unlocked, pp. Pre-proof.
  • Smets, P., 1993, “Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem”, International Journal of approximate reasoning, Cilt 9, Sayı 1, ss. 1-35.
  • Sokolova, M., Lapalme, G., 2009, “A systematic analysis of performance measures for classification tasks”, Information Processing and Management, Cilt 45, ss. 427–437.
  • Tabachnick, B. G., Fidell, L. S., Ullman, J. B., 2007, Using multivariate statistics, Boston: MA: Pearson. TÜİK, Ölüm ve Ölüm Nedeni İstatistikleri, 2019, https://data.tuik.gov.tr/Bulten/Index?p=Olum-ve-Olum-Nedeni-Istatistikleri-2019-33710, ziyaret tarihi: 07 Ağustos 2021.
  • Yar, M., Muhammad, T. , Maqsood H., Kil To, C., 2020, “Early and accurate detection and diagnosis of heart disease using intelligent computational model”, Scientific Reports, Cilt 10, Sayı 1.
  • Zhao, M. J., Edakunni, N., Pocock, A., & Brown, G, 2013, “Beyond Fano's inequality: Bounds on the optimal F-score, BER, and cost-sensitive risk and their implications”, The Journal of Machine Learning Research, Cilt 14, Sayı 1, ss. 1033-1090.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Onur Ünlü 0000-0003-3843-6160

Hüma Ünlü 0000-0002-2114-1289

Yılmaz Atay 0000-0002-3298-3334

Publication Date June 1, 2022
Submission Date August 1, 2021
Acceptance Date April 19, 2022
Published in Issue Year 2022

Cite

IEEE O. Ünlü, H. Ünlü, and Y. Atay, “KALP HASTALIĞI TEŞHİSİNDE YAPAY ZEKÂ YÖNTEMLERİNİN KULLANIMI VE KARŞILAŞTIRILMASI”, KONJES, vol. 10, no. 2, pp. 396–411, 2022, doi: 10.36306/konjes.975696.