Research Article
BibTex RIS Cite

PALADYUM TEMELLİ HİDROJEN PEROKSİT YAKIT HÜCRELERİ

Year 2021, , 17 - 28, 30.12.2021
https://doi.org/10.36306/konjes.978975

Abstract

Bu çalışmada hidrojen peroksit (H2O2) yakıt hücrelerinde katot katalizörü olarak kullanılmak üzere paladyum (Pd) temelli, karbon nanotüp (CNT) destekli bimetalik katalizörler sentezlenmiştir. MPd (M: Ni, Ag, Co, Mn, V, Zn) bimetalik katalizörler sodyum borhidrür (NaBH4) indirgeme yöntemi ile hazırlanmıştır. Hazırlanan katalizörlerin fiziksel karakterizasyonu XRD, XPS ve TEM teknikleriyle yapılmıştır. Katalizörlerin H2O2 elektroindirgenme reaksiyonu için elektrokimyasal karakterizasyonu dönüşümlü voltametri (CV), kronoamperometri (CA) ve elektrokimyasal impedans spektroskopisi (EIS) yöntemleri ile incelenmiştir. Elektrokimyasal ölçümler üç elektrotlu hücre sisteminde sodyum hidroksit (NaOH) elektrolit çözeltisinde gerçekleştirilmiştir. CoPd/CNT katalizörü H2O2 elektroindirgenme reaksiyonu için daha yüksek elektrokatalitik aktivite göstermiştir.

Supporting Institution

TÜBİTAK, Konya Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

2210-C Öncelikli Alanlara Yönelik Yurtiçi Yüksek Lisans Burs Programı, BAP Proje No: 18201153

Thanks

Bu çalışmayı destekleyen Konya Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğüne (Proje No: 18201153) teşekkür ederiz. Ayrıca 2210-C Öncelikli Alanlara Yönelik Yurtiçi Yüksek Lisans Burs Programı kapsamında destekleyen TÜBİTAK’a teşekkür ederiz.

References

  • Adams, B. D., Ostrom, C. K. ve Chen, A., 2011, Highly active PdPt catalysts for the electrochemical reduction of H2O2, Journal of the Electrochemical Society, 158 (4), B434.
  • Bharti, A., Cheruvally, G. ve Muliankeezhu, S., 2017, Microwave assisted, facile synthesis of Pt/CNT catalyst for proton exchange membrane fuel cell application, International Journal of Hydrogen Energy, 42 (16), 11622-11631.
  • Caglar, A., Ulas, B., Cogenli, M. S., Yurtcan, A. B. ve Kivrak, H. J. J. o. E. C., 2019, Synthesis and characterization of Co, Zn, Mn, V modified Pd formic acid fuel cell anode catalysts, 850, 113402.
  • Chowdhury, S. R., Mukherjee, P. ve kumar Bhattachrya, S., 2016, Palladium and palladium–copper alloy nano particles as superior catalyst for electrochemical oxidation of methanol for fuel cell applications, International Journal of Hydrogen Energy, 41 (38), 17072-17083.
  • Das, R., 2020, Artificial Photosynthesis, Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1-19.
  • De Souza, L. L. P., Lora, E. E. S., Palacio, J. C. E., Rocha, M. H., Renó, M. L. G. ve Venturini, O. J., 2018, Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil, Journal of cleaner production, 203, 444-468.
  • Fard, H. F., Khodaverdi, M., Pourfayaz, F. ve Ahmadi, M. H., 2020, Application of N-doped carbon nanotube-supported Pt-Ru as electrocatalyst layer in passive direct methanol fuel cell, International Journal of Hydrogen Energy, 45 (46), 25307-25316.
  • Fukuzumi, S., Lee, Y.-M. ve Nam, W., 2021, Recent progress in production and usage of hydrogen peroxide, Chinese Journal of Catalysis, 42 (8), 1241-1252.
  • Hosseini, M. ve Mahmoodi, R., 2017, Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M= Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance, Journal of Power Sources, 370, 87-97.
  • Jiang, X., Xiong, Y., Wang, Y., Wang, J., Li, N., Zhou, J., Fu, G., Sun, D. ve Tang, Y., 2019, Treelike two-level Pd x Ag y nanocrystals tailored for bifunctional fuel cell electrocatalysis, Journal of Materials Chemistry A, 7 (10), 5248-5257.
  • Lam, E. ve Luong, J. H., 2014, Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals, ACS catalysis, 4 (10), 3393-3410.
  • Lasia, A., 2002, Electrochemical impedance spectroscopy and its applications, In: Modern aspects of electrochemistry, Eds: Springer, p. 143-248.
  • Liao, F., Lo, T. W. B. ve Tsang, S. C. E., 2015, Recent Developments in Palladium‐Based Bimetallic Catalysts, ChemCatChem, 7 (14), 1998-2014.
  • Lombardi, L., Tribioli, L., Cozzolino, R. ve Bella, G., 2017, Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA, The International Journal of Life Cycle Assessment, 22 (12), 1989-2006.
  • Mahreni, A., Khadum, A. ve Daud, W., 2011, Nanocomposite electrolyte for PEMFC Application, Advances in Nanocomposites: Synthesis, Characterization and Industrial Applications, 263.
  • Martins, R., Martins, D., Costa, L., Matencio, T., Paniago, R. ve Montoro, L., 2020, Copper hexacyanoferrate as cathode material for hydrogen peroxide fuel cell, International Journal of Hydrogen Energy, 45 (47), 25708-25718.
  • Modisha, P. M., Ouma, C. N., Garidzirai, R., Wasserscheid, P. ve Bessarabov, D., 2019, The prospect of hydrogen storage using liquid organic hydrogen carriers, Energy & Fuels, 33 (4), 2778-2796.
  • Nazir, M. S., Mahdi, A. J., Bilal, M., Sohail, H. M., Ali, N. ve Iqbal, H. M., 2019, Environmental impact and pollution-related challenges of renewable wind energy paradigm–a review, Science of the Total Environment, 683, 436-444.
  • Nguyen, B., Kuperman, N., Goncher, G. ve Solanki, R., 2020, Membraneless H2O2 Fuel Cells Driven by Metallophthalocyanine Electrocatalysts, ECS Journal of Solid State Science and Technology, 9 (6), 061009.
  • Ong, B., Kamarudin, S. ve Basri, S., 2017, Direct liquid fuel cells: A review, International Journal of Hydrogen Energy, 42 (15), 10142-10157.
  • Pan, Y., 2019, Theoretical discovery of high capacity hydrogen storage metal tetrahydrides, International Journal of Hydrogen Energy, 44 (33), 18153-18158.
  • Poux, T., Bonnefont, A., Ryabova, A., Kéranguéven, G., Tsirlina, G. ve Savinova, E., 2014, Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling, Physical Chemistry Chemical Physics, 16 (27), 13595-13600.
  • Sharma, S. ve Ghoshal, S. K., 2015, Hydrogen the future transportation fuel: From production to applications, Renewable and Sustainable Energy Reviews, 43, 1151-1158.
  • Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N. ve Ward, K. R., 2019, The role of hydrogen and fuel cells in the global energy system, Energy & Environmental Science, 12 (2), 463-491.
  • Sun, L., He, W., Li, S., Shi, L., Zhang, Y. ve Liu, J., 2018, The high performance mushroom-like Pd@ SnO2/Ni foam electrode for H2O2 reduction in alkaline media, Journal of Power Sources, 395, 386-394.
  • Sun, L., Wen, F., Shi, L. ve Li, S., 2020, Pd and CoOx decorated reduced graphene oxide self-assembled on Ni foam as Al–H2O2 semi-fuel cells cathodes, Journal of alloys and compounds, 815, 152361.
  • Sun, L., Wen, F., Li, S. ve Zhang, Z., 2021, High efficient rGO-modified Ni foam supported Pd nanoparticles (PRNF) composite synthesized using spontaneous reduction for hydrogen peroxide electroreduction and electrooxidation, Journal of Power Sources, 481, 228878.
  • Tiwari, B., Noori, M. T. ve Ghangrekar, M., 2017, Carbon supported nickel-phthalocyanine/MnOx as novel cathode catalyst for microbial fuel cell application, International Journal of Hydrogen Energy, 42 (36), 23085-23094.
  • Tsang, C. H. A., Hui, K. N. ve Hui, K., 2019, Influence of Pd1Ptx alloy NPs on graphene aerogel/nickel foam as binder-free anodic electrode for electrocatalytic ethanol oxidation reaction, Journal of Power Sources, 413, 98-106.
  • Von Colbe, J. B., Ares, J.-R., Barale, J., Baricco, M., Buckley, C., Capurso, G., Gallandat, N., Grant, D. M., Guzik, M. N. ve Jacob, I., 2019, Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives, International Journal of Hydrogen Energy, 44 (15), 7780-7808.
  • Xu, H., Shang, H., Wang, C. ve Du, Y., 2021, Recent Progress of Ultrathin 2D Pd‐Based Nanomaterials for Fuel Cell Electrocatalysis, Small, 17 (5), 2005092.
  • Yamada, Y., Fukunishi, Y., Yamazaki, S.-i. ve Fukuzumi, S., 2010, Hydrogen peroxide as sustainable fuel: electrocatalysts for production with a solar cell and decomposition with a fuel cell, Chemical Communications, 46 (39), 7334-7336.
  • Yamada, Y., Yoneda, M. ve Fukuzumi, S., 2015, High and robust performance of H 2 O 2 fuel cells in the presence of scandium ion, Energy & Environmental Science, 8 (6), 1698-1701.
  • Zakaria, Z., Awang Mat, Z., Abu Hassan, S. H. ve Boon Kar, Y., 2020, A review of solid oxide fuel cell component fabrication methods toward lowering temperature, International Journal of Energy Research, 44 (2), 594-611.
  • Zhang, D., Wang, G., Yuan, Y., Li, Y., Jiang, S., Wang, Y., Ye, K., Cao, D., Yan, P. ve Cheng, K., 2016, Three-dimensional functionalized graphene networks modified Ni foam based gold electrode for sodium borohydride electrooxidation, International Journal of Hydrogen Energy, 41 (27), 11593-11598.

Palladium Based Hydrogen Peroxide Fuel Cells

Year 2021, , 17 - 28, 30.12.2021
https://doi.org/10.36306/konjes.978975

Abstract

In this study, carbon nanotube (CNT) supported palladium (Pd) based alloy catalysts were synthesized to be used as cathode catalyst in hydrogen peroxide (H2O2) fuel cells. MPd (M: Ni, Ag, Co, Mn, V, Zn) bimetallic catalysts were prepared by the sodium borohydride (NaBH4) reduction method. The physical characterization of the prepared catalysts was performed by XRD, XPS and TEM techniques. Electrochemical characterization of catalysts for H2O2 electroreduction reaction was investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) methods. Electrochemical measurements were carried out in sodium hydroxide (NaOH) electrolyte solution in a three-electrode cell system. CoPd/CNT catalysts showed higher activity for the H2O2 electroreduction reaction.

Project Number

2210-C Öncelikli Alanlara Yönelik Yurtiçi Yüksek Lisans Burs Programı, BAP Proje No: 18201153

References

  • Adams, B. D., Ostrom, C. K. ve Chen, A., 2011, Highly active PdPt catalysts for the electrochemical reduction of H2O2, Journal of the Electrochemical Society, 158 (4), B434.
  • Bharti, A., Cheruvally, G. ve Muliankeezhu, S., 2017, Microwave assisted, facile synthesis of Pt/CNT catalyst for proton exchange membrane fuel cell application, International Journal of Hydrogen Energy, 42 (16), 11622-11631.
  • Caglar, A., Ulas, B., Cogenli, M. S., Yurtcan, A. B. ve Kivrak, H. J. J. o. E. C., 2019, Synthesis and characterization of Co, Zn, Mn, V modified Pd formic acid fuel cell anode catalysts, 850, 113402.
  • Chowdhury, S. R., Mukherjee, P. ve kumar Bhattachrya, S., 2016, Palladium and palladium–copper alloy nano particles as superior catalyst for electrochemical oxidation of methanol for fuel cell applications, International Journal of Hydrogen Energy, 41 (38), 17072-17083.
  • Das, R., 2020, Artificial Photosynthesis, Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1-19.
  • De Souza, L. L. P., Lora, E. E. S., Palacio, J. C. E., Rocha, M. H., Renó, M. L. G. ve Venturini, O. J., 2018, Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil, Journal of cleaner production, 203, 444-468.
  • Fard, H. F., Khodaverdi, M., Pourfayaz, F. ve Ahmadi, M. H., 2020, Application of N-doped carbon nanotube-supported Pt-Ru as electrocatalyst layer in passive direct methanol fuel cell, International Journal of Hydrogen Energy, 45 (46), 25307-25316.
  • Fukuzumi, S., Lee, Y.-M. ve Nam, W., 2021, Recent progress in production and usage of hydrogen peroxide, Chinese Journal of Catalysis, 42 (8), 1241-1252.
  • Hosseini, M. ve Mahmoodi, R., 2017, Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M= Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance, Journal of Power Sources, 370, 87-97.
  • Jiang, X., Xiong, Y., Wang, Y., Wang, J., Li, N., Zhou, J., Fu, G., Sun, D. ve Tang, Y., 2019, Treelike two-level Pd x Ag y nanocrystals tailored for bifunctional fuel cell electrocatalysis, Journal of Materials Chemistry A, 7 (10), 5248-5257.
  • Lam, E. ve Luong, J. H., 2014, Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals, ACS catalysis, 4 (10), 3393-3410.
  • Lasia, A., 2002, Electrochemical impedance spectroscopy and its applications, In: Modern aspects of electrochemistry, Eds: Springer, p. 143-248.
  • Liao, F., Lo, T. W. B. ve Tsang, S. C. E., 2015, Recent Developments in Palladium‐Based Bimetallic Catalysts, ChemCatChem, 7 (14), 1998-2014.
  • Lombardi, L., Tribioli, L., Cozzolino, R. ve Bella, G., 2017, Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA, The International Journal of Life Cycle Assessment, 22 (12), 1989-2006.
  • Mahreni, A., Khadum, A. ve Daud, W., 2011, Nanocomposite electrolyte for PEMFC Application, Advances in Nanocomposites: Synthesis, Characterization and Industrial Applications, 263.
  • Martins, R., Martins, D., Costa, L., Matencio, T., Paniago, R. ve Montoro, L., 2020, Copper hexacyanoferrate as cathode material for hydrogen peroxide fuel cell, International Journal of Hydrogen Energy, 45 (47), 25708-25718.
  • Modisha, P. M., Ouma, C. N., Garidzirai, R., Wasserscheid, P. ve Bessarabov, D., 2019, The prospect of hydrogen storage using liquid organic hydrogen carriers, Energy & Fuels, 33 (4), 2778-2796.
  • Nazir, M. S., Mahdi, A. J., Bilal, M., Sohail, H. M., Ali, N. ve Iqbal, H. M., 2019, Environmental impact and pollution-related challenges of renewable wind energy paradigm–a review, Science of the Total Environment, 683, 436-444.
  • Nguyen, B., Kuperman, N., Goncher, G. ve Solanki, R., 2020, Membraneless H2O2 Fuel Cells Driven by Metallophthalocyanine Electrocatalysts, ECS Journal of Solid State Science and Technology, 9 (6), 061009.
  • Ong, B., Kamarudin, S. ve Basri, S., 2017, Direct liquid fuel cells: A review, International Journal of Hydrogen Energy, 42 (15), 10142-10157.
  • Pan, Y., 2019, Theoretical discovery of high capacity hydrogen storage metal tetrahydrides, International Journal of Hydrogen Energy, 44 (33), 18153-18158.
  • Poux, T., Bonnefont, A., Ryabova, A., Kéranguéven, G., Tsirlina, G. ve Savinova, E., 2014, Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling, Physical Chemistry Chemical Physics, 16 (27), 13595-13600.
  • Sharma, S. ve Ghoshal, S. K., 2015, Hydrogen the future transportation fuel: From production to applications, Renewable and Sustainable Energy Reviews, 43, 1151-1158.
  • Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N. ve Ward, K. R., 2019, The role of hydrogen and fuel cells in the global energy system, Energy & Environmental Science, 12 (2), 463-491.
  • Sun, L., He, W., Li, S., Shi, L., Zhang, Y. ve Liu, J., 2018, The high performance mushroom-like Pd@ SnO2/Ni foam electrode for H2O2 reduction in alkaline media, Journal of Power Sources, 395, 386-394.
  • Sun, L., Wen, F., Shi, L. ve Li, S., 2020, Pd and CoOx decorated reduced graphene oxide self-assembled on Ni foam as Al–H2O2 semi-fuel cells cathodes, Journal of alloys and compounds, 815, 152361.
  • Sun, L., Wen, F., Li, S. ve Zhang, Z., 2021, High efficient rGO-modified Ni foam supported Pd nanoparticles (PRNF) composite synthesized using spontaneous reduction for hydrogen peroxide electroreduction and electrooxidation, Journal of Power Sources, 481, 228878.
  • Tiwari, B., Noori, M. T. ve Ghangrekar, M., 2017, Carbon supported nickel-phthalocyanine/MnOx as novel cathode catalyst for microbial fuel cell application, International Journal of Hydrogen Energy, 42 (36), 23085-23094.
  • Tsang, C. H. A., Hui, K. N. ve Hui, K., 2019, Influence of Pd1Ptx alloy NPs on graphene aerogel/nickel foam as binder-free anodic electrode for electrocatalytic ethanol oxidation reaction, Journal of Power Sources, 413, 98-106.
  • Von Colbe, J. B., Ares, J.-R., Barale, J., Baricco, M., Buckley, C., Capurso, G., Gallandat, N., Grant, D. M., Guzik, M. N. ve Jacob, I., 2019, Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives, International Journal of Hydrogen Energy, 44 (15), 7780-7808.
  • Xu, H., Shang, H., Wang, C. ve Du, Y., 2021, Recent Progress of Ultrathin 2D Pd‐Based Nanomaterials for Fuel Cell Electrocatalysis, Small, 17 (5), 2005092.
  • Yamada, Y., Fukunishi, Y., Yamazaki, S.-i. ve Fukuzumi, S., 2010, Hydrogen peroxide as sustainable fuel: electrocatalysts for production with a solar cell and decomposition with a fuel cell, Chemical Communications, 46 (39), 7334-7336.
  • Yamada, Y., Yoneda, M. ve Fukuzumi, S., 2015, High and robust performance of H 2 O 2 fuel cells in the presence of scandium ion, Energy & Environmental Science, 8 (6), 1698-1701.
  • Zakaria, Z., Awang Mat, Z., Abu Hassan, S. H. ve Boon Kar, Y., 2020, A review of solid oxide fuel cell component fabrication methods toward lowering temperature, International Journal of Energy Research, 44 (2), 594-611.
  • Zhang, D., Wang, G., Yuan, Y., Li, Y., Jiang, S., Wang, Y., Ye, K., Cao, D., Yan, P. ve Cheng, K., 2016, Three-dimensional functionalized graphene networks modified Ni foam based gold electrode for sodium borohydride electrooxidation, International Journal of Hydrogen Energy, 41 (27), 11593-11598.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Burak Yapıcı 0000-0002-1244-2178

Ozlem Sahin 0000-0001-6188-5517

Project Number 2210-C Öncelikli Alanlara Yönelik Yurtiçi Yüksek Lisans Burs Programı, BAP Proje No: 18201153
Publication Date December 30, 2021
Submission Date August 5, 2021
Acceptance Date October 31, 2021
Published in Issue Year 2021

Cite

IEEE B. Yapıcı and O. Sahin, “PALADYUM TEMELLİ HİDROJEN PEROKSİT YAKIT HÜCRELERİ”, KONJES, vol. 9, pp. 17–28, 2021, doi: 10.36306/konjes.978975.