Research Article
BibTex RIS Cite

Investigation of Struvite Crystallization in the Presence of Succinic Acid

Year 2021, , 54 - 65, 30.12.2021
https://doi.org/10.36306/konjes.979952

Abstract

In this study, the structural, morphological and thermal properties of the struvite crystals obtained with and without succinic acid were investigated. The crystals obtained were characterized by XRD, SEM and FTIR analysis; and the variations in their particle size, shape parameters, filtration characteristics and surface charge were determined. The significant changes in the morphology and particle size of the struvite occurred along with the increase in succinic acid concentration. Compared to pure media, the filtration characteristics of the crystals modified depending on the changes in crystal morphology. It was determined that the filtration rate increased, and the specific cake resistance decreased based on the increment of additive concentration. The specific cake resistance was calculated to be 1.03×109 m/kg for 250 ppm additive concentration while it was 4.72×109 m/kg for pure media. Moreover, the thermal decomposition behavior, kinetics and thermodynamics of the struvite obtained were investigated by Coats-Redfern model. This study has revealed that the morphology of struvite leading to clogging problems in pipes especially in wastewater treatment plants from the industrial point of view could be changed by succinic acid and easily removed from the media. The understanding of thermal decomposition kinetics and thermodynamics of struvite has provided important contributions in terms of the determination of additive effects.

References

  • Akyol, E. Öner M., 2014, “Controlling of morphology and polymorph of calcium oxalate crystals by using polyelectrolytes”, Journal of Crystal Growth, 401, 260-265.
  • Bouropoulos, N.C., Koutsoukos, P.G., 2000, “Spontaneous precipitation of struvite from aqueous solutions”, Journal of Crystal Growth, 213(3–4), 381–388.
  • Coats, A.V., Redfern, J.P., 1964, “Kinetic parameters from thermogravimetric data”, Nature, 201, 68-69. Eyring, H. 1935, “The activated complex in chemical reactions”, J. Chem. Phys., 3, 107-115.
  • Evans, M.G., Polanyi, M., 1935, “Some applications of the transition state method to the calculation of reaction velocities, especially in solution”, J. Chem. Soc. Faraday Trans., 31, 875-894.
  • Fattah, K.P, 2012, “Assessing Struvite Formation Potential at Wastewater Treatment Plants”, International Journal of Environmental Science and Development, 3(6), 548–552.
  • Foletto, E.L., dos Santos, W.R.B., Mazutti, M.A., Jahn, S.L., Gündel, A., 2013, “Production of struvite from beverage waste as phosphorous source”, Mat. Res., 16, 242-245
  • Harrison, M.L.L., Johns, M.L.R., White, E.D.T., Mehta, C.G.M., 2011, “Growth rate kinetics for struvite crystallisation”, Chemical Engineering Transactions, 25, 309–314.
  • Holdich, R.G., 1990, “Rotary Vacuum Filter Scale-up Calculations — and the use of Computer Spreadsheets”, Filtration & Seperation, 27(6), 435–439.
  • Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Jefferson, B., Parsons, S.A., 2007, “Agglomeration of struvite crystals”, Water Research, 41(2), 419–425.
  • Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Parsons, S.A., 2005, “Impact of calcium on struvite crystal size, shape and purity”, Journal of Crystal Growth, 283, 514-522.
  • Neethling, J. B., Benisch, M. 2004, “Struvite control through process and facility design as well as operation strategy”, Water Science and Technology, 49(2), 191–199.
  • Perwitasari, D.S., Edahwati, L., Sutiyono, S., Muryanto, S., Jamari, J., Bayuseno, A.P., 2017, “Phosphate recovery through struvite-family crystals precipitated in the presence of citric acid: mineralogical phase and morphology evaluation”, Environmental Technology, 38(22), 2844-2855.
  • Polat, S., Görener, S., Sayan, P., 2021, “Assessment of the effects of acetic, oxalic, and tricarballylic acids on struvite crystallization: characterisation and kinetic studies”, Indian Chemical Engineer, 63(3), 324-337.
  • Song, Y., Dai, Y., Hu, Q., Yu, X., Qian, F., 2014, “Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater”, Chemosphere, 101, 41–48.
  • Tansel, B., Lunn, G., Monje, O., 2018, “Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions”, Chemosphere, 194, 504–514.
  • Wada, N., Kanamura, K., Umegaki, T., 2001, “Effects of carboxylic acids on the crystallization of calcium carbonate”, Journal of Colloid and Interface Science, 233(1), 65–72.
  • Wei, L., Hong, T., Li, X., Li, M., Zhang, Q., & Chen, T., 2019, “New insights into the adsorption behavior and mechanism of alginic acid onto struvite crystals”, Chemical Engineering Journal, 358, 1074–1082.
  • Yan, H., Shih, K., 2016, “Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis”, Water Research, 95, 310–318.
  • Zhang, Q., Zhao, S., Ye, X., Xiao, W., 2016, “Effects of organic substances on struvite crystallization and recovery”, Desalination and Water Treatment, 57(23), 10924–10933.
  • Zhou, Z., Hu, D., Ren, W., Zhao, Y., Jiang, L. M., & Wang, L., 2015, “Effect of humic substances on phosphorus removal by struvite precipitation”, Chemosphere, 141, 94–99.

SÜKSİNİK ASİT VARLIĞINDA STRUVİT KRİSTALİZASYONUNUN İNCELENMESİ

Year 2021, , 54 - 65, 30.12.2021
https://doi.org/10.36306/konjes.979952

Abstract

Bu çalışmada, saf ortamda ve süksinik asidin katkı maddesi olarak kullanıldığı ortamda üretilen struvit kristallerinin yapısal, morfolojik ve termal özellikleri incelenmiştir. Elde edilen kristaller, XRD, FTIR ve SEM analizleri ile karakterize edilmiş; kristallerin tane boyutu, şekil parametreleri, filtrasyon karakteristiği ve yüzey yükünde meydana gelen değişimler belirlenmiştir. Süksinik asit konsantrasyonunun artmasıyla kristal morfolojisinde, tane boyutunda ve şekil parametrelerinde önemli değişiklikler meydana gelmiştir. Saf ortam ile karşılaştırıldığında kristal morfolojisinde meydana gelen değişimlere bağlı olarak kristallerin filtrasyon karakteristiği de değişmiştir. Katkı konsantrasyonunun artışına bağlı olarak filtrasyon hızında artış, spesifik kek direncinde ise düşüş olduğu belirlenmiştir. Saf ortamda struvit kristallerinin spefisifik kek direnci 4,72×109 m/kg iken bu değer 250 ppm katkı konsantrsayonu için 1,03×109 m/kg olarak hesaplanmıştır. Elde edilen kristal ürünlerin aynı zamanda termal bozunma davranışları, bozunma kinetiği ve termodinamiği Coats-Redfern modeli kullanılarak incelenmiştir. Mevcut çalışma ile endüstriyel açıdan özellikle atık su arıtıma tesislerinde boru içlerinde tıkanmalara neden olan struvitin morfolojik yapısının süksinik asit ile değiştirilebildiği ve filtrasyon ile ortamdan daha kolay uzaklaştırılabilecek forma dönüştürüldüğü ortaya koyulmuştur. Aynı zamanda struvitin termal bozunma kinetiğinin ve termodinamiğinin belirlenmesi de katkı maddesi olarak kullanılan süksinik asidin etkisini belirlemek açısından önemli katkılar sağlamıştır.

References

  • Akyol, E. Öner M., 2014, “Controlling of morphology and polymorph of calcium oxalate crystals by using polyelectrolytes”, Journal of Crystal Growth, 401, 260-265.
  • Bouropoulos, N.C., Koutsoukos, P.G., 2000, “Spontaneous precipitation of struvite from aqueous solutions”, Journal of Crystal Growth, 213(3–4), 381–388.
  • Coats, A.V., Redfern, J.P., 1964, “Kinetic parameters from thermogravimetric data”, Nature, 201, 68-69. Eyring, H. 1935, “The activated complex in chemical reactions”, J. Chem. Phys., 3, 107-115.
  • Evans, M.G., Polanyi, M., 1935, “Some applications of the transition state method to the calculation of reaction velocities, especially in solution”, J. Chem. Soc. Faraday Trans., 31, 875-894.
  • Fattah, K.P, 2012, “Assessing Struvite Formation Potential at Wastewater Treatment Plants”, International Journal of Environmental Science and Development, 3(6), 548–552.
  • Foletto, E.L., dos Santos, W.R.B., Mazutti, M.A., Jahn, S.L., Gündel, A., 2013, “Production of struvite from beverage waste as phosphorous source”, Mat. Res., 16, 242-245
  • Harrison, M.L.L., Johns, M.L.R., White, E.D.T., Mehta, C.G.M., 2011, “Growth rate kinetics for struvite crystallisation”, Chemical Engineering Transactions, 25, 309–314.
  • Holdich, R.G., 1990, “Rotary Vacuum Filter Scale-up Calculations — and the use of Computer Spreadsheets”, Filtration & Seperation, 27(6), 435–439.
  • Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Jefferson, B., Parsons, S.A., 2007, “Agglomeration of struvite crystals”, Water Research, 41(2), 419–425.
  • Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Parsons, S.A., 2005, “Impact of calcium on struvite crystal size, shape and purity”, Journal of Crystal Growth, 283, 514-522.
  • Neethling, J. B., Benisch, M. 2004, “Struvite control through process and facility design as well as operation strategy”, Water Science and Technology, 49(2), 191–199.
  • Perwitasari, D.S., Edahwati, L., Sutiyono, S., Muryanto, S., Jamari, J., Bayuseno, A.P., 2017, “Phosphate recovery through struvite-family crystals precipitated in the presence of citric acid: mineralogical phase and morphology evaluation”, Environmental Technology, 38(22), 2844-2855.
  • Polat, S., Görener, S., Sayan, P., 2021, “Assessment of the effects of acetic, oxalic, and tricarballylic acids on struvite crystallization: characterisation and kinetic studies”, Indian Chemical Engineer, 63(3), 324-337.
  • Song, Y., Dai, Y., Hu, Q., Yu, X., Qian, F., 2014, “Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater”, Chemosphere, 101, 41–48.
  • Tansel, B., Lunn, G., Monje, O., 2018, “Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions”, Chemosphere, 194, 504–514.
  • Wada, N., Kanamura, K., Umegaki, T., 2001, “Effects of carboxylic acids on the crystallization of calcium carbonate”, Journal of Colloid and Interface Science, 233(1), 65–72.
  • Wei, L., Hong, T., Li, X., Li, M., Zhang, Q., & Chen, T., 2019, “New insights into the adsorption behavior and mechanism of alginic acid onto struvite crystals”, Chemical Engineering Journal, 358, 1074–1082.
  • Yan, H., Shih, K., 2016, “Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis”, Water Research, 95, 310–318.
  • Zhang, Q., Zhao, S., Ye, X., Xiao, W., 2016, “Effects of organic substances on struvite crystallization and recovery”, Desalination and Water Treatment, 57(23), 10924–10933.
  • Zhou, Z., Hu, D., Ren, W., Zhao, Y., Jiang, L. M., & Wang, L., 2015, “Effect of humic substances on phosphorus removal by struvite precipitation”, Chemosphere, 141, 94–99.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Sevgi Polat 0000-0002-0934-2125

Nurseli Görener 0000-0002-1815-2120

Perviz Sayan 0000-0003-4407-6464

Publication Date December 30, 2021
Submission Date August 7, 2021
Acceptance Date October 31, 2021
Published in Issue Year 2021

Cite

IEEE S. Polat, N. Görener, and P. Sayan, “SÜKSİNİK ASİT VARLIĞINDA STRUVİT KRİSTALİZASYONUNUN İNCELENMESİ”, KONJES, vol. 9, pp. 54–65, 2021, doi: 10.36306/konjes.979952.