Research Article
BibTex RIS Cite

MESOPOROUS ALUMINOSILICATE SUPPORTED CATALYSTS IN ALTERNATIVE FUEL HYDROGEN PRODUCTION

Year 2021, , 107 - 123, 30.12.2021
https://doi.org/10.36306/konjes.982692

Abstract

In the present study, Ni-containing mesoporous aluminosilicate (Al2(SiO2)3) supported catalysts, which are resistant to carbon formation, were developed for hydrogen production from acetic acid. Commercial aluminosilicate (Al2(SiO2)3) was used as catalyst support. Furthermore, to improve the catalyst stability, Mg, La, Ce, Ca, Ru metals, and Ni (5% by mass) were incorporated by the wet impregnation method into the catalyst supports’ structure. The synthesized catalysts were characterized to define their physical and chemical properties. N2 adsorption-desorption results reveal that the resulting isotherm behavior of all the prepared catalysts is consistent with type IV isotherm with plate-like wall structures. The catalytic activity test of the prepared catalysts was investigated at a reaction temperature of 750 C and a feed molar ratio of 1/2.5 (AA/H2O) in a packed bed continuous reactor system. Activity test results showed that catalyst composition has profound effects on product distribution. Hydrogen-rich syngas was produced over 5Ni-3Ru@Al2(SiO2)3 and 5Ni-3CeO2@Al2(SiO2)3 (about % 44 and % 46, respectively) catalysts. However, the addition of MgO over the 5Ni@Al2(SiO2)3 catalyst strongly influenced the selectivity of hydrogen. Syngas, which contains an equimolar amount of H2, and CO is a quite important feedstock for the Fischer-Tropsch process (about 35% each), was obtained with the 5Ni-3MgO@Al2(SiO2)3 catalyst.

Supporting Institution

Gazi Üniversitesi (BAP)

Project Number

FGA-2021-7076.

Thanks

The authors are grateful for the financial support provided by Gazi University Scientific Research Fund under the Research Project of FGA-2021-7076.

References

  • Arbag, H. 2018, “Effect of impregnation sequence of Mg on performance of mesoporous alumina supported Ni catalyst in dry reforming of methane”, International Journal of Hydrogen Energy, 43, 6561-6574.
  • An, L., Dong, C., Yang, Y., Zhang, J., & He, L. 2011, “The influence of Ni loading on coke formation in steam reforming of acetic acid. Renewable Energy, 36, 930-935.
  • Basile, A., Gallucci, F., Iulianelli, A., Borgognoni, F., Tosti, S. 2008, “Acetic acid steam reforming in a Pd–Ag membrane reactor: the effect of the catalytic bed pattern”, Journal of Membrane Science, 311, 46-52.
  • Basagiannis, A. C., Verykios, X. E. 2007, “Catalytic steam reforming of acetic acid for hydrogen production”, International journal of hydrogen energy, 32, 3343-3355.
  • Cakiryilmaz, N., Arbag, H., Oktar, N., Dogu, G., Dogu, T. 2018, “Effect of W incorporation on the product distribution in steam reforming of bio-oil derived acetic acid over Ni based Zr-SBA-15 catalyst”, International Journal of Hydrogen Energy, 43, 3629-3642.
  • Chen, B., Lin, J., Chen, X., Zheng, Y., Zhang, H., Huang, F., ... Zheng, Y. 2020, “Controllable synthesis of mesoporous alumina as support for palladium catalysts and reconstruction of active sites during methane combustion”, International Journal of Hydrogen Energy, 45, 15142-15156.
  • Chen, G., Tao, J., Liu, C., Yan, B., Li, W., & Li, X. 2017, “Hydrogen production via acetic acid steam reforming: a critical review on catalysts”, Renewable and Sustainable Energy Reviews, 79, 1091-1098.
  • Chen, J., Wang, M., Wang, S., & Li, X. 2018, “Hydrogen production via steam reforming of acetic acid over biochar-supported nickel catalysts”, International Journal of Hydrogen Energy, 43, 18160-18168.
  • Choi, I.H., Hwang, K.R., Lee, K.Y. and Lee, I.G., 2019, “Catalytic steam reforming of biomass-derived acetic acid over modified Ni/γ-Al2O3 for sustainable hydrogen production”, International Journal of Hydrogen Energy, 44, 180-190.
  • Chong, C.C., Teh, L.P. and Setiabudi, H.D., 2019, “Syngas production via CO2 reforming of CH4 over Ni-based SBA-15: Promotional effect of promoters (Ce, Mg, and Zr)”, Materials Today Energy, 12, 408-417.
  • Fauteux-Lefebvre, C., Abatzoglou, N., Blanchard, J. and Gitzhofer, F., 2010, “Steam reforming of liquid hydrocarbons over a nickel–alumina spinel catalyst”, Journal of Power Sources, 195, 3275-3283.
  • Fu, P., Zhang, A., Luo, S., Yi, W., Hu, S. and Zhang, Y., 2019, “Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production”, ACS omega, 4, 13585-13593.
  • Goicoechea, S., Ehrich, H., Arias, P. L., & Kockmann, N. 2015, “Thermodynamic analysis of acetic acid steam reforming for hydrogen production”, Journal of power sources, 279, 312-322.
  • Guggilla, V.S., Akyurtlu, J., Akyurtlu, A. and Blankson, I., 2010, “Steam reforming of n-dodecane over Ru− Ni-based catalysts”, Industrial & Engineering Chemistry Research, 49, 8164-8173.
  • Hu, X., Dong, D., Shao, X., Zhang, L. and Lu, G., 2017, “Steam reforming of acetic acid over cobalt catalysts: Effects of Zr, Mg and K addition”, International Journal of Hydrogen Energy, 42, 4793-4803.
  • Karaman, B. P., Cakiryilmaz, N., Arbag, H., Oktar, N., Dogu, G., Dogu, T. 2017, “Performance comparison of mesoporous alumina supported Cu & Ni based catalysts in acetic acid reforming. International Journal of Hydrogen Energy”, 42, 26257-26269.
  • Morris, S. M., Fulvio, P. F., Jaroniec, M. 2008, “Ordered mesoporous alumina-supported metal oxides”, Journal of the American Chemical Society, 130, 15210-15216.
  • Murata, K., Wang, L., Saito, M., Inaba, M., Takahara, I. and Mimura, N., 2004, “Hydrogen production from steam reforming of hydrocarbons over alkaline-earth metal-modified Fe-or Ni-based catalysts”, Energy & fuels, 18, 122-126.
  • Nabgan, W., Abdullah, T. A. T., Mat, R., Nabgan, B., Gambo, Y., Moghadamian, K. 2016, “Acetic acid-phenol steam reforming for hydrogen production: Effect of different composition of La2O3-Al2O3 support for bimetallic Ni-Co catalyst”, Journal of environmental chemical engineering, 4, 2765-2773.
  • Nabgan, W., Abdullah, T.A.T., Mat, R., Nabgan, B., Jalil, A.A., Firmansyah, L. and Triwahyono, S., 2017, “Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst”, international journal of hydrogen energy, 42, 8975-8985.
  • Omoregbe, O., Danh, H.T., Abidin, S.Z., Setiabudi, H.D., Abdullah, B., Vu, K.B. and Vo, D.V.N., 2016, “Influence of lanthanide promoters on Ni/SBA-15 catalysts for syngas production by methane dry reforming”, Procedia engineering, 148, 1388-1395.
  • Omoregbe, O., Danh, H.T., Nguyen-Huy, C., Setiabudi, H.D., Abidin, S.Z., Truong, Q.D. and Vo, D.V.N., 2017, “Syngas production from methane dry reforming over Ni/SBA-15 catalyst: Effect of operating parameters”, international journal of hydrogen energy, 42, 11283-11294.
  • Ozel, S., Meric, G. G., Arbag, H., Degirmenci, L., & Oktar, N. 2020, “Steam reforming of acetic acid in the presence of Ni coated with SiO2 microsphere catalysts”, International Journal of Hydrogen Energy, 45, 21252-21261.
  • Phung, T.K., Pham, T.L.M., Nguyen, A.N.T., Vu, K.B., Giang, H.N., Nguyen, T.A., Huynh, T.C. and Pham, H.D., 2020, “Effect of supports and promoters on the performance of Ni‐based catalysts in ethanol steam reforming”, Chemical Engineering & Technology, 43, 672-688.
  • Pu, J., Luo, Y., Wang, N., Bao, H., Wang, X. and Qian, E.W., 2018, “Ceria-promoted Ni@ Al2O3 core-shell catalyst for steam reforming of acetic acid with enhanced activity and coke resistance”, International Journal of Hydrogen Energy, 43, 3142-3153.
  • Rodrigues, C. T., Alonso, C. G., Machado, G. D., de Souza, T. L. 2020, “Optimization of bio-oil steam reforming process by thermodynamic analysis”, International Journal of Hydrogen Energy, 45, 28350-28360.
  • Sahin, S. O., Arbag, H., Oktar, N., Murtezaoglu, K. 2019, “Catalytic Performances of Bi-Metallic Ni-Co Catalysts in Acetic Acid Steam Reforming Reaction: Effect of Mg Incorporation”, International Journal of Chemical Reactor Engineering, 17.
  • Thangadurai, T. and Tye, C.T., 2021, “Acidity and basicity of metal oxide-based catalysts in catalytic cracking of vegetable oil”, Brazilian Journal of Chemical Engineering, 1-20.
  • Yang, X., Wang, Y., Li, M., Sun, B., Li, Y. and Wang, Y., 2016, “Enhanced hydrogen production by steam reforming of acetic acid over a Ni catalyst supported on mesoporous MgO”, Energy & Fuels, 30, 2198-2203.
  • Wang, S., Zhang, F., Cai, Q., Zhu, L., & Luo, Z. 2015, “Steam reforming of acetic acid over coal ash supported Fe and Ni catalysts”, International Journal of Hydrogen Energy, 40, 11406-11413.
  • Wang, M., Zhang, F. and Wang, S., 2017, “Effect of La2O3 replacement on γ-Al2O3 supported nickel catalysts for acetic acid steam reforming”, International Journal of Hydrogen Energy, 42, 20540-20548.
  • Zdravkov, B., Čermák, J., Šefara, M., Janků, J. 2007, “Pore classification in the characterization of porous materials: A perspective”, Open Chemistry, 5, 385-395.
  • Zhang, Z., Hu, X., Gao, G., Wei, T., Dong, D., Wang, Y., Geng, D. 2019, “Steam reforming of acetic acid over NiKOH/Al2O3 catalyst with low nickel loading: The remarkable promotional effects of KOH on activity”, International Journal of Hydrogen Energy, 44, 729-747.
  • Zhang, Z., Hu, X., Li, J., Gao, G., Dong, D., Westerhof, R., Wang, Y. 2018, “Steam reforming of acetic acid over Ni/Al2O3 catalysts: Correlation of nickel loading with properties and catalytic behaviors of the catalysts”, Fuel, 217, 389-403.
  • Zhang, C., Hu, X., Yu, Z., Zhang, Z., Chen, G., Li, C., Liu, Q., Xiang, J., Wang, Y. and Hu, S., 2019, “Steam reforming of acetic acid for hydrogen production over attapulgite and alumina supported Ni catalysts: impacts of properties of supports on catalytic behaviors”, International Journal of Hydrogen Energy, 44, 5230-5244.
  • Zhang, F., Wang, N., Yang, L., Li, M. and Huang, L., 2014, “Ni–Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil”, international journal of hydrogen energy, 39, 18688-18694.

Alternatif Yakıt Hidrojen Üretiminde Mezogözenekli Alüminosilikat Destekli Katalizörler

Year 2021, , 107 - 123, 30.12.2021
https://doi.org/10.36306/konjes.982692

Abstract

Bu çalışma kapsamında asetik asitten hidrojen üretimi için karbon oluşumuna karşı dirençli Ni içerikli mezogözenekli alüminosilikat (Al2(SiO2)3) destekli katalizörler geliştirilmiştir. Mezogözenekli ticari alüminosilikat (Al2(SiO2)3) katalizör destek malzemesi olarak kullanılmıştır. Ayrıca, ticari alüminosilikat destek malzemesinin yapısına hidrojen seçiciliğinin arttırılması için nikelin yanısıra Mg, La, Ce, Ca ve Ru metalleri (kütlece % 5) ıslak emdirme yöntemi ile yüklenmiştir. Sentezlenen katalizörlerin bazı fiziksel ve kimyasal özelliklerini belirlenmesi için karakterizasyon analizleri gerçekleştirilmiştir. Mezogözenekli Al2(SiO2)3 malzemelerinin N2 adsorpsiyon-desorpsiyon analizi sonucu elde edilen izotermleri Tip IV izotermi ile uyumlu olup malzemelerin levha gibi yapıda olduğu saptanmıştır. Hazırlanan katalizörlerin katalitik aktivite testleri sürekli akışlı dolgulu reaktör sisteminde 750 C reaksiyon sıcaklığında ve 1/2.5 (AA/H2O) besleme molar oranında yürütülmüştür. Aktivite test çalışmaları sonucunda katalizör içeriğinin, ürün dağılımını önemli ölçüde etkilediği görülmüştür. 5Ni-3Ru@Al2(SiO2)3 ve 5Ni-3CeO2@Al2(SiO2)3 katalizörleri ile hidrojen içeriği yüksek sentez gazı (sırasıyla yaklaşık % 44 ve % 46) elde edilmiştir. Ayrıca 5Ni@Al2(SiO2)3 katalizörüne MgO ilavesi hidrojen seçiciliğini oldukça etkilemiştir. 5Ni-3MgO@Al2(SiO2)3 katalizörü ile eşit molarda H2 ile CO içeren ve Fischer-Tropsch prosesi için önemli bir ham madde olan sentez gazı elde edilmiştir.

Project Number

FGA-2021-7076.

References

  • Arbag, H. 2018, “Effect of impregnation sequence of Mg on performance of mesoporous alumina supported Ni catalyst in dry reforming of methane”, International Journal of Hydrogen Energy, 43, 6561-6574.
  • An, L., Dong, C., Yang, Y., Zhang, J., & He, L. 2011, “The influence of Ni loading on coke formation in steam reforming of acetic acid. Renewable Energy, 36, 930-935.
  • Basile, A., Gallucci, F., Iulianelli, A., Borgognoni, F., Tosti, S. 2008, “Acetic acid steam reforming in a Pd–Ag membrane reactor: the effect of the catalytic bed pattern”, Journal of Membrane Science, 311, 46-52.
  • Basagiannis, A. C., Verykios, X. E. 2007, “Catalytic steam reforming of acetic acid for hydrogen production”, International journal of hydrogen energy, 32, 3343-3355.
  • Cakiryilmaz, N., Arbag, H., Oktar, N., Dogu, G., Dogu, T. 2018, “Effect of W incorporation on the product distribution in steam reforming of bio-oil derived acetic acid over Ni based Zr-SBA-15 catalyst”, International Journal of Hydrogen Energy, 43, 3629-3642.
  • Chen, B., Lin, J., Chen, X., Zheng, Y., Zhang, H., Huang, F., ... Zheng, Y. 2020, “Controllable synthesis of mesoporous alumina as support for palladium catalysts and reconstruction of active sites during methane combustion”, International Journal of Hydrogen Energy, 45, 15142-15156.
  • Chen, G., Tao, J., Liu, C., Yan, B., Li, W., & Li, X. 2017, “Hydrogen production via acetic acid steam reforming: a critical review on catalysts”, Renewable and Sustainable Energy Reviews, 79, 1091-1098.
  • Chen, J., Wang, M., Wang, S., & Li, X. 2018, “Hydrogen production via steam reforming of acetic acid over biochar-supported nickel catalysts”, International Journal of Hydrogen Energy, 43, 18160-18168.
  • Choi, I.H., Hwang, K.R., Lee, K.Y. and Lee, I.G., 2019, “Catalytic steam reforming of biomass-derived acetic acid over modified Ni/γ-Al2O3 for sustainable hydrogen production”, International Journal of Hydrogen Energy, 44, 180-190.
  • Chong, C.C., Teh, L.P. and Setiabudi, H.D., 2019, “Syngas production via CO2 reforming of CH4 over Ni-based SBA-15: Promotional effect of promoters (Ce, Mg, and Zr)”, Materials Today Energy, 12, 408-417.
  • Fauteux-Lefebvre, C., Abatzoglou, N., Blanchard, J. and Gitzhofer, F., 2010, “Steam reforming of liquid hydrocarbons over a nickel–alumina spinel catalyst”, Journal of Power Sources, 195, 3275-3283.
  • Fu, P., Zhang, A., Luo, S., Yi, W., Hu, S. and Zhang, Y., 2019, “Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production”, ACS omega, 4, 13585-13593.
  • Goicoechea, S., Ehrich, H., Arias, P. L., & Kockmann, N. 2015, “Thermodynamic analysis of acetic acid steam reforming for hydrogen production”, Journal of power sources, 279, 312-322.
  • Guggilla, V.S., Akyurtlu, J., Akyurtlu, A. and Blankson, I., 2010, “Steam reforming of n-dodecane over Ru− Ni-based catalysts”, Industrial & Engineering Chemistry Research, 49, 8164-8173.
  • Hu, X., Dong, D., Shao, X., Zhang, L. and Lu, G., 2017, “Steam reforming of acetic acid over cobalt catalysts: Effects of Zr, Mg and K addition”, International Journal of Hydrogen Energy, 42, 4793-4803.
  • Karaman, B. P., Cakiryilmaz, N., Arbag, H., Oktar, N., Dogu, G., Dogu, T. 2017, “Performance comparison of mesoporous alumina supported Cu & Ni based catalysts in acetic acid reforming. International Journal of Hydrogen Energy”, 42, 26257-26269.
  • Morris, S. M., Fulvio, P. F., Jaroniec, M. 2008, “Ordered mesoporous alumina-supported metal oxides”, Journal of the American Chemical Society, 130, 15210-15216.
  • Murata, K., Wang, L., Saito, M., Inaba, M., Takahara, I. and Mimura, N., 2004, “Hydrogen production from steam reforming of hydrocarbons over alkaline-earth metal-modified Fe-or Ni-based catalysts”, Energy & fuels, 18, 122-126.
  • Nabgan, W., Abdullah, T. A. T., Mat, R., Nabgan, B., Gambo, Y., Moghadamian, K. 2016, “Acetic acid-phenol steam reforming for hydrogen production: Effect of different composition of La2O3-Al2O3 support for bimetallic Ni-Co catalyst”, Journal of environmental chemical engineering, 4, 2765-2773.
  • Nabgan, W., Abdullah, T.A.T., Mat, R., Nabgan, B., Jalil, A.A., Firmansyah, L. and Triwahyono, S., 2017, “Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst”, international journal of hydrogen energy, 42, 8975-8985.
  • Omoregbe, O., Danh, H.T., Abidin, S.Z., Setiabudi, H.D., Abdullah, B., Vu, K.B. and Vo, D.V.N., 2016, “Influence of lanthanide promoters on Ni/SBA-15 catalysts for syngas production by methane dry reforming”, Procedia engineering, 148, 1388-1395.
  • Omoregbe, O., Danh, H.T., Nguyen-Huy, C., Setiabudi, H.D., Abidin, S.Z., Truong, Q.D. and Vo, D.V.N., 2017, “Syngas production from methane dry reforming over Ni/SBA-15 catalyst: Effect of operating parameters”, international journal of hydrogen energy, 42, 11283-11294.
  • Ozel, S., Meric, G. G., Arbag, H., Degirmenci, L., & Oktar, N. 2020, “Steam reforming of acetic acid in the presence of Ni coated with SiO2 microsphere catalysts”, International Journal of Hydrogen Energy, 45, 21252-21261.
  • Phung, T.K., Pham, T.L.M., Nguyen, A.N.T., Vu, K.B., Giang, H.N., Nguyen, T.A., Huynh, T.C. and Pham, H.D., 2020, “Effect of supports and promoters on the performance of Ni‐based catalysts in ethanol steam reforming”, Chemical Engineering & Technology, 43, 672-688.
  • Pu, J., Luo, Y., Wang, N., Bao, H., Wang, X. and Qian, E.W., 2018, “Ceria-promoted Ni@ Al2O3 core-shell catalyst for steam reforming of acetic acid with enhanced activity and coke resistance”, International Journal of Hydrogen Energy, 43, 3142-3153.
  • Rodrigues, C. T., Alonso, C. G., Machado, G. D., de Souza, T. L. 2020, “Optimization of bio-oil steam reforming process by thermodynamic analysis”, International Journal of Hydrogen Energy, 45, 28350-28360.
  • Sahin, S. O., Arbag, H., Oktar, N., Murtezaoglu, K. 2019, “Catalytic Performances of Bi-Metallic Ni-Co Catalysts in Acetic Acid Steam Reforming Reaction: Effect of Mg Incorporation”, International Journal of Chemical Reactor Engineering, 17.
  • Thangadurai, T. and Tye, C.T., 2021, “Acidity and basicity of metal oxide-based catalysts in catalytic cracking of vegetable oil”, Brazilian Journal of Chemical Engineering, 1-20.
  • Yang, X., Wang, Y., Li, M., Sun, B., Li, Y. and Wang, Y., 2016, “Enhanced hydrogen production by steam reforming of acetic acid over a Ni catalyst supported on mesoporous MgO”, Energy & Fuels, 30, 2198-2203.
  • Wang, S., Zhang, F., Cai, Q., Zhu, L., & Luo, Z. 2015, “Steam reforming of acetic acid over coal ash supported Fe and Ni catalysts”, International Journal of Hydrogen Energy, 40, 11406-11413.
  • Wang, M., Zhang, F. and Wang, S., 2017, “Effect of La2O3 replacement on γ-Al2O3 supported nickel catalysts for acetic acid steam reforming”, International Journal of Hydrogen Energy, 42, 20540-20548.
  • Zdravkov, B., Čermák, J., Šefara, M., Janků, J. 2007, “Pore classification in the characterization of porous materials: A perspective”, Open Chemistry, 5, 385-395.
  • Zhang, Z., Hu, X., Gao, G., Wei, T., Dong, D., Wang, Y., Geng, D. 2019, “Steam reforming of acetic acid over NiKOH/Al2O3 catalyst with low nickel loading: The remarkable promotional effects of KOH on activity”, International Journal of Hydrogen Energy, 44, 729-747.
  • Zhang, Z., Hu, X., Li, J., Gao, G., Dong, D., Westerhof, R., Wang, Y. 2018, “Steam reforming of acetic acid over Ni/Al2O3 catalysts: Correlation of nickel loading with properties and catalytic behaviors of the catalysts”, Fuel, 217, 389-403.
  • Zhang, C., Hu, X., Yu, Z., Zhang, Z., Chen, G., Li, C., Liu, Q., Xiang, J., Wang, Y. and Hu, S., 2019, “Steam reforming of acetic acid for hydrogen production over attapulgite and alumina supported Ni catalysts: impacts of properties of supports on catalytic behaviors”, International Journal of Hydrogen Energy, 44, 5230-5244.
  • Zhang, F., Wang, N., Yang, L., Li, M. and Huang, L., 2014, “Ni–Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil”, international journal of hydrogen energy, 39, 18688-18694.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ahmat Ibrahim Saleh This is me 0000-0003-4128-5033

Emine Kaya Ekinci 0000-0002-0958-1513

Birce Pekmezci 0000-0002-9051-2354

Nuray Oktar 0000-0001-8980-7457

Project Number FGA-2021-7076.
Publication Date December 30, 2021
Submission Date August 15, 2021
Acceptance Date November 26, 2021
Published in Issue Year 2021

Cite

IEEE A. I. Saleh, E. Kaya Ekinci, B. Pekmezci, and N. Oktar, “MESOPOROUS ALUMINOSILICATE SUPPORTED CATALYSTS IN ALTERNATIVE FUEL HYDROGEN PRODUCTION”, KONJES, vol. 9, pp. 107–123, 2021, doi: 10.36306/konjes.982692.