Research Article
BibTex RIS Cite

FENOLFTALEİN TABANLI FLORESANS SENSÖR SENTEZİ VE SULU ORTAMDA AĞIR METALLERE KARŞI OPTİK ÖZELLİKLERİNİN İNCELENMESİ

Year 2021, , 187 - 199, 30.12.2021
https://doi.org/10.36306/konjes.983194

Abstract

Bu çalışmada (R)-(-)-2-fenilglisinol ile türevlendirilmiş fenolftalein tabanlı ligand L bileşiği sentezlendi ve yapısı 1H-NMR ve FTIR spektroskopisi ile karakterize edildi. Hazırlanan fenolftalein tabanlı ligand L’nin farklı katyonlara karşı optik özellikleri etanol-su (95/5; v/v) ortamında floresans ve UV-GB spektroskopisi ile incelendi. Ligand L’nin Zn2+ katyonuna karşı diğer katyonlara göre 454 nm’de şiddetli, seçimli ve hassas bir floresans özelliği gösterdiği belirlendi. Ligand L’nin Zn2+ ile kompleksleşme mekanizması, ICT ve C=N izomerizasyonunun engellenmesi ve kompleksleşme ile açıklandı. Ligand L ile Zn2+ katyonu arasında floresans titrasyon çalışması gerçekleştirildi ve gerekli sensör parametreleri incelendi. Job grafiğine göre, kompleksleşme oranı 1:2 olarak belirlendi. Bağlanma sabiti Benesi-Hildebrand denklemine göre 1,72x1012 (logK= 12,24) olarak hesaplandı. Limit algılama değeri 118 nM olarak hesaplandı. Tüm veriler incelendiğinde, hazırlanan fenolftalein tabanlı ligand L’nin Zn2+ katyonuna karşı seçimli ve hassas floresans sensör özellikleri gösterdiği belirlendi.

References

  • Alici, O, Aydin, D, 2021 “A Schiff-base receptor based on phenolphthalein derivate appended 2-furoic hydrazide: Highly sensitive fluorogenic “turn on” chemosensor for Al3+”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 404, pp. 112876.
  • Bie, F., Cao, H., Yan, P., Cui, H., Shi, Y., Ma, J, Liu, X., Han, Y., 2020, “A cyanobiphenyl-based ratiometric fluorescent sensor for highly selective and sensitive detection of Zn2+”, Inorganica Chimica Acta, vol. 508, pp. 119652.
  • Erdemir, S., Kocyigit, O., 2017, “A novel dye based on phenolphthalein-fluorescein as a fluorescent probe for the dual-channel detection of Hg2+ and Zn2+”, Dyes and Pigments, vol. 145, pp. 72 – 79.
  • Erdemir, S., Kocyigit, O., 2018, “Dual recognition of Zn2+ and Al3+ ions by a novel probe containing two fluorophore through different signaling mechanisms”, Sensors and Actuators B: Chemical, vol. 273, pp 56 – 61.
  • Erdemir, S., Malkondu, S., 2019, “Dual-emmisive fluorescent probe based on phenolphthalein appended diaminomaleonitrile for Al3+ and the colorimetric recognition of Cu2+” Dyes and Pigments, vol 163, pp 330 – 336.
  • Erdemir, S., Malkondu, S., Kocyigit, O., 2019, “A reversible calix[4]arene armed phenolphthalein based fluorescent probe for the detection of Zn2+ and an application in living cells”, The Journal of Biological and Chemical Luminescence, vol. 34, pp. 106 – 112.
  • Erdemir, S., Tabakci, B., 2017, “Selective and Sensitive Fluorescein-Benzothiazole Based Fluorescent Sensor for Zn2+ Ion in Aqueous Media”, Journal of Fluorescence, vol. 27, pp. 2145 – 2152.
  • Erdemir, S., Tabakci, B., 2018, “Highly sensitive fluorometric detection of Zn2+ ion by calix[4]arene derivative appended 4-biphenylcarbonitrile”, Dyes and Pigments, vol. 151, pp. 116 – 122.
  • Fu, J., Chang, Y., Li, B., Wang, X., Xie, X., Xu, K., 2020, “A dual fluorescence probe for Zn2+ and Al3+ through differentially response and bioimazing in living cells”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 225, pp 117493.
  • Helal, A., Rashid, M. H., Choi, C., Kim, H. 2021, “New regioisomeric naphthol-substituted thiazole based ratiometric fluorescence sensor for Zn2+ with a remarkable red shift in emission spectra”, Tetrahedron, vol. 68, pp. 647 – 653.
  • Hojitsiriyanont, J., Chaibuth, P., Boonkitpatarakul, K., Ruangpornvisuti, V., Palaga, T., Chainok, K., Sukwattanasinitt, M., 2021, “Effects of amino proton and denticity of quinolone-pyridine based dyes on Cd2+ and Zn2+ fluorescence sensing properties”, Journal of Photochemistry & Photobiology A: Chemistry, vol. 415, pp. 113307.
  • Jimenez-Sanchez, A., Ortiz, B., Navarrete, V. O., Flores, J. C., Farfan, N., Santillan, R., 2015, “A dual-model fluorescent Zn2+/Cu2+ ions sensor with in-situ detection of S2-/(PO4)- and colorimetric detection of Fe 2+ ion”, Inorganica Chimica Acta, vol 429, pp 243 – 251.
  • Joseph, R., Ramanujam, B., Pal, H., Rao, C. P., 2008, “Lower rim 1,3-di-amide-derivative of calix[4]arene possessing bis-{N-(2,2’-dipyridylamide)} pendants: a dual fluorescence sensor for Zn2+ and Ni2+”, Tetrahedron Letters, vol 49, pp 6257 – 6261.
  • Liu, J., Meng, X., Duan, H., Xu, T., Ding, Z., Liu, Y., Lucia, L. 2016, “Two Schiff-base fluorescence probes based on triazole and benzotriazole for selective detection of Zn2+”, Sensors and Actuators B: Chemical, vol 227, pp 296 – 303.
  • Maity, D., Mukherjee, A., Mandal, S. K., Roy, P., 2019, “Modulation of fluorescence sensing properties of quinolone-based chemosensor for Zn2+: Application in cell imaging studies”, Journal of Luminescence, vol. 210, pp 508 – 518.
  • Nunes, M. C., Carlos, F. d. S., Fuganti, O., Galindo, D. D. M., De Boni, L., Abate, G., Nunes, F. S., 2020, “Turn-on fluorescence study of a highly selective acridine-based chemosensor for Zn2+ in aqueous solutions”, Inorganica Chimica Acta, vol. 499, pp. 119191.
  • Park, G. J., Lee, M. M., You, G. R., Choi, Y. W., Kim, C., 2014, “A turn-on and reversible fluorescence sensor with high affinity to Zn2+ in aqueous solution”, Tetrahedron Letters, vol. 55, pp. 2517 – 2522.
  • Rajasekaran, D., Venkatachalam, K., Periasamy, V., 2020, “A bisphenol based fluorescence chemosensor for the selective detection of Zn2+ and PPi ions and its bioluminescence imaging”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 242, pp 118730.
  • Roy, N., Dutta, A., Mondal, P., Paul, P. C., Singh, T. S., 2016, “A new coumarin based dual functional chemosensor for colorimetric detection of Fe3+ and fluorescence turn-on responde of Zn2+”, Sensors and Actuators B: Chemical, vol 236, pp 719 – 731.
  • Sasaki, H., Hanaoka, K., Urano, Y., Terai, T., Nagano, T., 2011, “Design and synthesis of a novel fluorescence probe for Zn2+ based on the spirolactam ring-opening process of rhodamine derivatives”, Bioorganic & Medicinal Chemistry, vol.19, pp 1072 – 1078.
  • Shao, Y. ve diğ., 2015, “Advances in molecular quantum chemistry contained in the Q-Chem 4 program package”, Molecular Physics, vol. 113, pp. 184-215.
  • Tabakci B., Ahmed, H. M. A., Erdemir, S., 2019, “Fast and Reversible “Turn on” Fluorescent Sensors Based on Bisphenol-a for Zn2+ in Aqueous Solution”, Journal of Fluorescence, vol. 29, pp. 1049 – 1087.
  • Venkatesan, V., R. Kumar, S., Kumar, S. K. A., Sahoo, S. K., 2019, “Highly selective turn-on fluorogenic chemosensor for Zn2+ based on chelation enhanced fluorescence”, Inorganic Chemistry Communications, vol. 102, pp. 171 – 179.
  • Wang, R., Wang, N., Tu, Y., Liu, G., Pu, S., 2018, “A new fluorescence based on diarylethene with a N’-(quinolin-8-ylmethylene)benzohydrazide group for Zn2+ detection”, Journal of Photochemistry & Photobiology A: Chemistry, vol. 364, pp. 32 – 39.
  • Xu, T., Duan, H., Wang, X., Meng, X., Bu, J., 2015, “Fluorescence sensors for Zn2+ based on conjugated indole Schiff base”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 138, pp 603 – 608.
  • Zhu, J., Zhang, Y., Chen, Y., Sun, T., Tang, Y., Huang, Y., Yang, Q., Ma, D., Wang, Y., Wang, M., 2017, “A Schiff base fluorescence probe for highly selective turn-on recognition of Zn2+”, Tetrahedron Letters, vol. 58, pp. 365 – 370.

Synthesis of Phenolphtalein-Based Fluorescence Sensor and Investigation of Its Optical Properties Towards Heavy Metals in Aqueous Media

Year 2021, , 187 - 199, 30.12.2021
https://doi.org/10.36306/konjes.983194

Abstract

In this study, phenolphthalein-based ligand L compound derivatized with R-2-phenylglycinol was synthesized and its structure was characterized by 1H-NMR and FTIR spectroscopy. Optical properties of the prepared phenolphthalein-based ligand L towards different cations were investigated by fluorescence and UV-VIS spectroscopy in ethanol-water (95/5; v/v) medium. It was determined that ligand L showed a strong, selective and sensitive fluorescence at 454 nm towards the Zn2+ cation compared to other cations. The mechanism of ligand L complexing with Zn2+ was explained by ICT and inhibition of C=N isomerization and complexation. Fluorescence titration study was performed between ligand L and Zn2+ cation and necessary sensor parameters were examined. According to the Job plot, the complexing ratio was determined as 1:2. The binding constant was calculated as 1.72 x 1012 (logK= 12.24) according to the Benesi-Hildebrand equation. The limit detection value was calculated as 118 nM. When all data were examined, it was determined that the prepared phenolphthalein-based ligand L showed selective and sensitive fluorescence sensor properties against Zn2+ cation.

References

  • Alici, O, Aydin, D, 2021 “A Schiff-base receptor based on phenolphthalein derivate appended 2-furoic hydrazide: Highly sensitive fluorogenic “turn on” chemosensor for Al3+”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 404, pp. 112876.
  • Bie, F., Cao, H., Yan, P., Cui, H., Shi, Y., Ma, J, Liu, X., Han, Y., 2020, “A cyanobiphenyl-based ratiometric fluorescent sensor for highly selective and sensitive detection of Zn2+”, Inorganica Chimica Acta, vol. 508, pp. 119652.
  • Erdemir, S., Kocyigit, O., 2017, “A novel dye based on phenolphthalein-fluorescein as a fluorescent probe for the dual-channel detection of Hg2+ and Zn2+”, Dyes and Pigments, vol. 145, pp. 72 – 79.
  • Erdemir, S., Kocyigit, O., 2018, “Dual recognition of Zn2+ and Al3+ ions by a novel probe containing two fluorophore through different signaling mechanisms”, Sensors and Actuators B: Chemical, vol. 273, pp 56 – 61.
  • Erdemir, S., Malkondu, S., 2019, “Dual-emmisive fluorescent probe based on phenolphthalein appended diaminomaleonitrile for Al3+ and the colorimetric recognition of Cu2+” Dyes and Pigments, vol 163, pp 330 – 336.
  • Erdemir, S., Malkondu, S., Kocyigit, O., 2019, “A reversible calix[4]arene armed phenolphthalein based fluorescent probe for the detection of Zn2+ and an application in living cells”, The Journal of Biological and Chemical Luminescence, vol. 34, pp. 106 – 112.
  • Erdemir, S., Tabakci, B., 2017, “Selective and Sensitive Fluorescein-Benzothiazole Based Fluorescent Sensor for Zn2+ Ion in Aqueous Media”, Journal of Fluorescence, vol. 27, pp. 2145 – 2152.
  • Erdemir, S., Tabakci, B., 2018, “Highly sensitive fluorometric detection of Zn2+ ion by calix[4]arene derivative appended 4-biphenylcarbonitrile”, Dyes and Pigments, vol. 151, pp. 116 – 122.
  • Fu, J., Chang, Y., Li, B., Wang, X., Xie, X., Xu, K., 2020, “A dual fluorescence probe for Zn2+ and Al3+ through differentially response and bioimazing in living cells”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 225, pp 117493.
  • Helal, A., Rashid, M. H., Choi, C., Kim, H. 2021, “New regioisomeric naphthol-substituted thiazole based ratiometric fluorescence sensor for Zn2+ with a remarkable red shift in emission spectra”, Tetrahedron, vol. 68, pp. 647 – 653.
  • Hojitsiriyanont, J., Chaibuth, P., Boonkitpatarakul, K., Ruangpornvisuti, V., Palaga, T., Chainok, K., Sukwattanasinitt, M., 2021, “Effects of amino proton and denticity of quinolone-pyridine based dyes on Cd2+ and Zn2+ fluorescence sensing properties”, Journal of Photochemistry & Photobiology A: Chemistry, vol. 415, pp. 113307.
  • Jimenez-Sanchez, A., Ortiz, B., Navarrete, V. O., Flores, J. C., Farfan, N., Santillan, R., 2015, “A dual-model fluorescent Zn2+/Cu2+ ions sensor with in-situ detection of S2-/(PO4)- and colorimetric detection of Fe 2+ ion”, Inorganica Chimica Acta, vol 429, pp 243 – 251.
  • Joseph, R., Ramanujam, B., Pal, H., Rao, C. P., 2008, “Lower rim 1,3-di-amide-derivative of calix[4]arene possessing bis-{N-(2,2’-dipyridylamide)} pendants: a dual fluorescence sensor for Zn2+ and Ni2+”, Tetrahedron Letters, vol 49, pp 6257 – 6261.
  • Liu, J., Meng, X., Duan, H., Xu, T., Ding, Z., Liu, Y., Lucia, L. 2016, “Two Schiff-base fluorescence probes based on triazole and benzotriazole for selective detection of Zn2+”, Sensors and Actuators B: Chemical, vol 227, pp 296 – 303.
  • Maity, D., Mukherjee, A., Mandal, S. K., Roy, P., 2019, “Modulation of fluorescence sensing properties of quinolone-based chemosensor for Zn2+: Application in cell imaging studies”, Journal of Luminescence, vol. 210, pp 508 – 518.
  • Nunes, M. C., Carlos, F. d. S., Fuganti, O., Galindo, D. D. M., De Boni, L., Abate, G., Nunes, F. S., 2020, “Turn-on fluorescence study of a highly selective acridine-based chemosensor for Zn2+ in aqueous solutions”, Inorganica Chimica Acta, vol. 499, pp. 119191.
  • Park, G. J., Lee, M. M., You, G. R., Choi, Y. W., Kim, C., 2014, “A turn-on and reversible fluorescence sensor with high affinity to Zn2+ in aqueous solution”, Tetrahedron Letters, vol. 55, pp. 2517 – 2522.
  • Rajasekaran, D., Venkatachalam, K., Periasamy, V., 2020, “A bisphenol based fluorescence chemosensor for the selective detection of Zn2+ and PPi ions and its bioluminescence imaging”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 242, pp 118730.
  • Roy, N., Dutta, A., Mondal, P., Paul, P. C., Singh, T. S., 2016, “A new coumarin based dual functional chemosensor for colorimetric detection of Fe3+ and fluorescence turn-on responde of Zn2+”, Sensors and Actuators B: Chemical, vol 236, pp 719 – 731.
  • Sasaki, H., Hanaoka, K., Urano, Y., Terai, T., Nagano, T., 2011, “Design and synthesis of a novel fluorescence probe for Zn2+ based on the spirolactam ring-opening process of rhodamine derivatives”, Bioorganic & Medicinal Chemistry, vol.19, pp 1072 – 1078.
  • Shao, Y. ve diğ., 2015, “Advances in molecular quantum chemistry contained in the Q-Chem 4 program package”, Molecular Physics, vol. 113, pp. 184-215.
  • Tabakci B., Ahmed, H. M. A., Erdemir, S., 2019, “Fast and Reversible “Turn on” Fluorescent Sensors Based on Bisphenol-a for Zn2+ in Aqueous Solution”, Journal of Fluorescence, vol. 29, pp. 1049 – 1087.
  • Venkatesan, V., R. Kumar, S., Kumar, S. K. A., Sahoo, S. K., 2019, “Highly selective turn-on fluorogenic chemosensor for Zn2+ based on chelation enhanced fluorescence”, Inorganic Chemistry Communications, vol. 102, pp. 171 – 179.
  • Wang, R., Wang, N., Tu, Y., Liu, G., Pu, S., 2018, “A new fluorescence based on diarylethene with a N’-(quinolin-8-ylmethylene)benzohydrazide group for Zn2+ detection”, Journal of Photochemistry & Photobiology A: Chemistry, vol. 364, pp. 32 – 39.
  • Xu, T., Duan, H., Wang, X., Meng, X., Bu, J., 2015, “Fluorescence sensors for Zn2+ based on conjugated indole Schiff base”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 138, pp 603 – 608.
  • Zhu, J., Zhang, Y., Chen, Y., Sun, T., Tang, Y., Huang, Y., Yang, Q., Ma, D., Wang, Y., Wang, M., 2017, “A Schiff base fluorescence probe for highly selective turn-on recognition of Zn2+”, Tetrahedron Letters, vol. 58, pp. 365 – 370.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Yasemin Ünsal 0000-0002-5835-2426

Egemen Özçelik 0000-0002-2604-4656

Mustafa Tabakcı 0000-0003-2941-2191

Publication Date December 30, 2021
Submission Date August 15, 2021
Acceptance Date December 21, 2021
Published in Issue Year 2021

Cite

IEEE Y. Ünsal, E. Özçelik, and M. Tabakcı, “FENOLFTALEİN TABANLI FLORESANS SENSÖR SENTEZİ VE SULU ORTAMDA AĞIR METALLERE KARŞI OPTİK ÖZELLİKLERİNİN İNCELENMESİ”, KONJES, vol. 9, pp. 187–199, 2021, doi: 10.36306/konjes.983194.