Research Article
BibTex RIS Cite

Investigation of the Catalytic Effect of Cobalt Based Metallic Nano Catalyst on the Potassium Boron Hydride Hydrolysis Reaction

Year 2021, , 200 - 212, 30.12.2021
https://doi.org/10.36306/konjes.997368

Abstract

Metal hydrides are the leading boron based compounds used in hydrogen storage. Potassium boron is hydride; low cost, non-toxic, stable at high temperatures of these compounds, etc. as it is an important source of hydrogen storage due to its properties. Potassium boron hydride, which provides hydrogen as much as the hydrogen supplied from water as a result of hydrolysis, provides many advantages if it is used as a hydrogen source. In this study, the catalytic parameters of bimetallic nanocatalyst synthesized from cobalt (Co) and chromium (Cr) were investigated so as to use in potassium boron hydride hydrolysis. For the catalyst synthesis and effect, the optimum data for the hydrolysis reaction were obtained in the light of metal incorporation ratio, solvent medium, catalyst amount, potassium borohydride concentration and temperature parameters, respectively. Under the best conditions, the hydrogen production rate was determined as 2448.24 mL/g.min. As a result of repeated use to determine the catalyst performance, it was determined that 100% product yield was achieved until the 8th use. When the reaction kinetics were examined, it was determined that the reaction was of the 0 th order and the activation energy of the reaction was 41.3 kJ/mol. As a result of the study, it is considered that the use of Co-Cr catalyst for hydrogen production will be appropriate if potassium boron hydride is used as a hydrogen source in fuel cells. Since potassium borohydride stores less hydrogen than other hydrogen-storing compounds, it has not been studied much until now. However, as shown in this study, it enables pretty high hydrogen production. Therefore, it is expected to encounter many similar studies in the future.

References

  • Dincer, İ., 2002, “Technical, environmental and exergetic aspects of hydrogen energy systems”, International journal of hydrogen energy, 27(3), 265-285.
  • Hagen, J., 2015, “Industrial catalysis: a practical approach”, John Wiley & Sons.
  • İzgi, M. S., 2016, “Effect of microwave irritated Co-B-Cr catalyst on the hydrolysis of sodium borohydride”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(17), 2590-2597.
  • İzgi, M. S., Ece, M. Ş., Kazici, H. Ç., Şahi̇n, Ö., ve Onat, E., 2020, “Hydrogen production by using Ru nanoparticle decorated with Fe3O4@ SiO2–NH2 core-shell microspheres”, International Journal of Hydrogen Energy, 45(55), 30415-30430.
  • Jain, I. P., Jain, P., ve Jain, A., 2010,” Novel hydrogen storage materials: A review of lightweight complex hydrides”, Journal of Alloys and Compounds, 503(2), 303-339.
  • Keskin, S., 2019, “Potasyum borhidrür (KBH4) hidrolizinin çeşitli katalizörler varlığında farklı parametrelere bağlı olarak incelenmesi”, Doktora Tezi, Kimya Anabilim Dalı, Fen Bilimleri Enstitüsü, Van Yüzüncü Yıl Üniversitesi, Van.
  • Keskin, M.S., Ağırtaş, M.S., Şahin, Ö., ve Horoz, S. 2020. An effıcıent TiO2-supported ruthenıum (Ru/TiO2) catalyst for electrochemıcal hydrogen generatıon from aqueous potassıum borohydrıde. Digest journal of nanomaterials & biostructures (djnb), 15(2).
  • Kılınç, D., ve Şahin, Ö., 2019, “Metal-Schiff Base complex catalyst in KBH4 hydrolysis reaction for hydrogen production”, International Journal of Hydrogen Energy, 44(34), 18848-18857.
  • Kim, K. C., ve Sholl, D. S., 2010, “Crystal structures and thermodynamic investigations of LiK (BH4) 2, KBH4, and NaBH4 from first-principles calculations”, The Journal of Physical Chemistry C, 114(1), 678-686.
  • Laversenne, L., Goutaudier, C., Chiriac, R., Sigala, C., ve Bonnetot, B., 2008, “Hydrogen storage in borohydrides comparison of hydrolysis conditions of LiBH4, NaBH4 and KBH4”, Journal of thermal analysis and calorimetry, 94(3), 785-790.
  • Onat, E., 2016, “Farklı şartlarda katalitik aktivitesi artırılan Co-B, Co-Ti-B, Ni-B katalizörleri varlığında sodyum borhidrür hidrolizinin incelenmesi” Yüksek Lisans Tezi, Kimya Anabilim Dalı, Fen Bilimleri Enstitüsü, Bitlis Eren Üniversitesi, Bitlis.
  • Onat, E., Çevik, S., Şahin, Ö., Horoz, S., ve İzgi, M. S., 2021, “Investigation of high catalytic activity catalyst for high hydrogen production rate: Co-Ru@ MOF”, Journal of the Australian Ceramic Society, 1-7.
  • Onder, A., ve Ozay, O. 2020. Fly ash as catalyst support material in the hydrolysis of ethylenediamine bisborane for hydrogen production: The use of coal-fired power plant waste. International Journal of Hydrogen Energy, 45(20), 11651-11661.
  • Özkar, S., ve Zahmakıran, M., 2005, “Hydrogen generation from hydrolysis of sodium borohydride using Ru (0) nanoclusters as catalyst”, Journal of alloys and compounds, 404, 728-731.
  • Şahin, Ö., İzgi, M. S., Onat, E., ve Saka, C., 2016, “Influence of the using of methanol instead of water in the preparation of Co–B–TiO2 catalyst for hydrogen production by NaBH4 hydrolysis and plasma treatment effect on the Co–B–TiO2 catalyst”, International Journal of Hydrogen Energy, 41(4), 2539-2546.
  • Taştaban, M., 2019, “Katalitik ıslak peroksit oksidasyonu yoluyla azo boyar madde gideriminde kullanılmak üzere bentonit destekli katalizör sentezi ve karakterizasyonu”, Doktora Tezi, Temel İşlemler ve Termodinamik Bilim Dalı, Fen Bilimleri Enstitüsü, Eskişehir Osmangazi Üniversitesi, Eskişehir.
  • White, R. J., Luque, R., Budarin, V. L., Clark, J. H., ve Macquarrie, D. J., 2009, “Supported metal nanoparticles on porous materials”, Methods and applications. Chemical Society Reviews, 38(2), 481-494.
  • Xu, D., Wang, H., Guo, Q., ve Ji, S., 2011, “Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4”, Fuel processing technology, 92(8), 1606-1610.

KOBALT BAZLI BİMETALİK NANOKATALİZÖRÜN POTASYUM BORHİDRÜR HİDROLİZ TEPKİMESİ ÜZERİNDEKİ KATALİTİK ETKİSİNİN İNCELENMESİ

Year 2021, , 200 - 212, 30.12.2021
https://doi.org/10.36306/konjes.997368

Abstract

Hidrojen depolamada kullanılan bor kaynaklı bileşiklerin başında metal hidrürler gelmektedir. Bu bileşiklerden potasyum borhidrür; düşük maliyetli olması, zehirli olmaması, yüksek sıcaklıklarda kararlı olması vb. özelliklerinden dolayı önemli bir hidrojen depolama kaynağıdır. Hidroliz sonucunda kendi yapısındaki hidrojen kadar hidrojenin sudan temin edilmesini sağlayan potasyum borhidrür, hidrojen kaynağı olarak kullanılması durumunda birçok avantaj sağlamaktadır. Bu çalışmada, potasyum borhidrür hidrolizinde kullanılmak üzere kobalt (Co) ve kromdan (Cr) sentezlenen bimetalik nanokatalizörün katalitik parametreleri incelenmiştir. Katalizör sentezi ve etkisi için sırasıyla metal birleşme oranı, çözücü ortamı, katalizör miktarı, potasyum borhidrür konsantrasyonu ve sıcaklık parametreleri ışığında hidroliz tepkimesi optimum verileri elde edilmiştir. En iyi şartlarda hidrojen üretim hızı 2448,24 mL/g.min olarak belirlenmiştir. Katalizör performansını belirlemek üzere yapılan tekrarlı kullanımlar sonucunda 8. Kullanıma kadar %100 ürün veriminin sağlandığı belirlenmiştir. Tepkime kinetiği incelendiğinde tepkimenin 0. Dereceden olduğu, tepkime aktivasyon enerjisinin ise 41,3 kJ/mol olduğu belirlenmiştir. Çalışma sonucu olarak yakıt hücrelerinde hidrojen kaynağı olarak potasyum borhidrürün kullanılması durumunda hidrojen üretimi için Co-Cr katalizörünün kullanımının yerinde olacağı değerlendirilmektedir. Potasyum borhidrür, diğer hidrojen depolama özelliğindeki bileşiklere göre daha az oranda hidrojen depoladığından bugüne kadar çok araştırılmamıştır. Fakat bu çalışmada görüldüğü gibi hidrolizi sonucunda yüksek oranda hidrojen üretimi sağlanmıştır. Dolayısıyla, ileriki süreçte benzer çalışmalarla çokça karşılaşılması beklenmektedir.

References

  • Dincer, İ., 2002, “Technical, environmental and exergetic aspects of hydrogen energy systems”, International journal of hydrogen energy, 27(3), 265-285.
  • Hagen, J., 2015, “Industrial catalysis: a practical approach”, John Wiley & Sons.
  • İzgi, M. S., 2016, “Effect of microwave irritated Co-B-Cr catalyst on the hydrolysis of sodium borohydride”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(17), 2590-2597.
  • İzgi, M. S., Ece, M. Ş., Kazici, H. Ç., Şahi̇n, Ö., ve Onat, E., 2020, “Hydrogen production by using Ru nanoparticle decorated with Fe3O4@ SiO2–NH2 core-shell microspheres”, International Journal of Hydrogen Energy, 45(55), 30415-30430.
  • Jain, I. P., Jain, P., ve Jain, A., 2010,” Novel hydrogen storage materials: A review of lightweight complex hydrides”, Journal of Alloys and Compounds, 503(2), 303-339.
  • Keskin, S., 2019, “Potasyum borhidrür (KBH4) hidrolizinin çeşitli katalizörler varlığında farklı parametrelere bağlı olarak incelenmesi”, Doktora Tezi, Kimya Anabilim Dalı, Fen Bilimleri Enstitüsü, Van Yüzüncü Yıl Üniversitesi, Van.
  • Keskin, M.S., Ağırtaş, M.S., Şahin, Ö., ve Horoz, S. 2020. An effıcıent TiO2-supported ruthenıum (Ru/TiO2) catalyst for electrochemıcal hydrogen generatıon from aqueous potassıum borohydrıde. Digest journal of nanomaterials & biostructures (djnb), 15(2).
  • Kılınç, D., ve Şahin, Ö., 2019, “Metal-Schiff Base complex catalyst in KBH4 hydrolysis reaction for hydrogen production”, International Journal of Hydrogen Energy, 44(34), 18848-18857.
  • Kim, K. C., ve Sholl, D. S., 2010, “Crystal structures and thermodynamic investigations of LiK (BH4) 2, KBH4, and NaBH4 from first-principles calculations”, The Journal of Physical Chemistry C, 114(1), 678-686.
  • Laversenne, L., Goutaudier, C., Chiriac, R., Sigala, C., ve Bonnetot, B., 2008, “Hydrogen storage in borohydrides comparison of hydrolysis conditions of LiBH4, NaBH4 and KBH4”, Journal of thermal analysis and calorimetry, 94(3), 785-790.
  • Onat, E., 2016, “Farklı şartlarda katalitik aktivitesi artırılan Co-B, Co-Ti-B, Ni-B katalizörleri varlığında sodyum borhidrür hidrolizinin incelenmesi” Yüksek Lisans Tezi, Kimya Anabilim Dalı, Fen Bilimleri Enstitüsü, Bitlis Eren Üniversitesi, Bitlis.
  • Onat, E., Çevik, S., Şahin, Ö., Horoz, S., ve İzgi, M. S., 2021, “Investigation of high catalytic activity catalyst for high hydrogen production rate: Co-Ru@ MOF”, Journal of the Australian Ceramic Society, 1-7.
  • Onder, A., ve Ozay, O. 2020. Fly ash as catalyst support material in the hydrolysis of ethylenediamine bisborane for hydrogen production: The use of coal-fired power plant waste. International Journal of Hydrogen Energy, 45(20), 11651-11661.
  • Özkar, S., ve Zahmakıran, M., 2005, “Hydrogen generation from hydrolysis of sodium borohydride using Ru (0) nanoclusters as catalyst”, Journal of alloys and compounds, 404, 728-731.
  • Şahin, Ö., İzgi, M. S., Onat, E., ve Saka, C., 2016, “Influence of the using of methanol instead of water in the preparation of Co–B–TiO2 catalyst for hydrogen production by NaBH4 hydrolysis and plasma treatment effect on the Co–B–TiO2 catalyst”, International Journal of Hydrogen Energy, 41(4), 2539-2546.
  • Taştaban, M., 2019, “Katalitik ıslak peroksit oksidasyonu yoluyla azo boyar madde gideriminde kullanılmak üzere bentonit destekli katalizör sentezi ve karakterizasyonu”, Doktora Tezi, Temel İşlemler ve Termodinamik Bilim Dalı, Fen Bilimleri Enstitüsü, Eskişehir Osmangazi Üniversitesi, Eskişehir.
  • White, R. J., Luque, R., Budarin, V. L., Clark, J. H., ve Macquarrie, D. J., 2009, “Supported metal nanoparticles on porous materials”, Methods and applications. Chemical Society Reviews, 38(2), 481-494.
  • Xu, D., Wang, H., Guo, Q., ve Ji, S., 2011, “Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4”, Fuel processing technology, 92(8), 1606-1610.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Erhan Onat 0000-0003-1638-0151

Mehmet Aslan 0000-0002-0703-2270

Mehmet Sait İzgi 0000-0003-3685-3219

Publication Date December 30, 2021
Submission Date September 18, 2021
Acceptance Date December 22, 2021
Published in Issue Year 2021

Cite

IEEE E. Onat, M. Aslan, and M. S. İzgi, “KOBALT BAZLI BİMETALİK NANOKATALİZÖRÜN POTASYUM BORHİDRÜR HİDROLİZ TEPKİMESİ ÜZERİNDEKİ KATALİTİK ETKİSİNİN İNCELENMESİ”, KONJES, vol. 9, pp. 200–212, 2021, doi: 10.36306/konjes.997368.