Research Article
BibTex RIS Cite

Pd/TiO2 KATALİZÖRÜNÜN SENTEZİ VE SODYUM BORHİDRÜRDEN HİDROJEN ÜRETİMİNDE AKTİVİTESİNİN BELİRLENMESİ

Year 2021, , 66 - 78, 30.12.2021
https://doi.org/10.36306/konjes.997854

Abstract

Hidrojen, yenilenebilir enerji kaynaklarından üretilen ve artan enerji talebine sürdürülebilir bir çözüm olabilecek çevre dostu bir enerji taşıyıcısıdır. Hidrojenin depolanması ve iletimi için metal borhidrürler depolama kapasiteleri ile öne çıkmaktadır. Bu çalışmada, sol-jel yöntemi ile Pd/TiO2 katalizörü sentezlenmiş ve X-Işınları difraktometresi (XRD), Brunauer, Emmett-Teller (BET), X-Işınları Floresans (XRF) ve Taramalı Elektron Mikroskobu-Enerji Dağılımlı X-Işınları (SEM-EDX) teknikleri ile karakterize edilmiştir. Katalizörün aktivite çalışmaları hidrojen üretmek amacıyla NaBH4’ün hidroliz reaksiyonunda gerçekleştirilmiştir. Deneysel çalışma koşulları 100 mg NaBH4, 100 mg katalizör, 5 mL 0,25 M NaOH olarak belirlenmiş ve üç farklı reaksiyon sıcaklığı (20, 40 ve 60 oC) denenmiştir. En yüksek hidrojen verimi (%100) ve hidrojen üretim hızı (102 mL/gkat.dk) 60 oC reaksiyon sıcaklığında elde edilmiştir. Katalizörün tekrar kullanılabilirlik testlerinde ilk 4 kullanımdan sonra aktivitesinde azalma olduğu gözlenmiştir. NaBH4 hidrolizi reaksiyonuna n. derecede reaksiyon kinetiği modeli uygulanarak reaksiyon hız derecesi 0,7 olarak belirlenmiştir. Arrhenius eşitliği ile aktivasyon enerjisi 33,23 kJ/mol olarak hesaplanmıştır.

Supporting Institution

Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri Komisyonu

Project Number

1708F481

Thanks

Bu çalışma Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri Komisyonu tarafından kabul edilen 1708F481 no.lu proje kapsamında desteklenmiştir.

References

  • Akbayrak, S., Özçifçi, Z., Tabak, A., 2019, "Noble metal nanoparticles supported on activated carbon: Highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane", Journal of Colloid and Interface Science, Cilt 546, ss. 324–332.
  • Babu, N. S., Lingaiah, N., Pasha, N., Kumar, J. V., Prasad, P. S. S., 2009, "Influence of particle size and nature of Pd species on the hydrodechlorination of chloroaromatics: Studies on Pd/TiO2 catalysts in chlorobenzene conversion", Catalysis Today, Cilt 141 Sayı (1–2), ss. 120–124.
  • Bozkurt, G., Özer, A., Yurtcan, A. B., 2019, "Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4", Energy, Cilt 180, ss. 702–713.
  • Ceyhan, A. A., Edebali, S., Fangaj, E., 2020, "A study on hydrogen generation from NaBH4 solution using Co-loaded resin catalysts". International Journal of Hydrogen Energy, Cilt 45, Sayı 60, ss. 34761–34772.
  • Chen, K., Ouyang, L., Wang, H., Liu, J., Shao, H., Zhu, M., 2020, "A high-performance hydrogen generation system: Hydrolysis of LiBH4-based materials catalyzed by transition metal chlorides", Renewable Energy, Cilt 156, ss. 655–664.
  • Crisafulli, C., Scir, S., Salanitri, M., Zito, R., Calamia, S., 2011, "Hydrogen production through NaBH4 hydrolysis over supported Ru catalysts: An insight on the effect of the support and the ruthenium precursor", International Journal of Hydrogen Energy, Cilt 36 Sayı 6, ss. 3817–3826.
  • Colak, T. O., Tuc Altaf, C., Minkina, V. G., Shabunya, S. I., Sankir, M., Demirci Sankir, N., Kalinin, V. I., 2021, "Efficient Hydrogen Generation with Co3O4@ TiO2-g-C3N4 Composite Catalyst via Catalytic NaBH4 Hydrolysis", Catalysis Letters, ss. 1-10.
  • Dai, P., Zhao, X., Xu, D., Wang, C., Tao, X., Liu, X., Gao, J., 2019, "Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor", International Journal of Hydrogen Energy, Cilt 44, Sayı 53, ss. 28463–28470.
  • Dönmez, F., Ayas, N., 2018, "Effect of Ru/C and Ni/TiO2 on the Hydrogen Generation from Metal Hydrides", Journal of Clean Energy Technologies, Cilt 6, Sayı 5, ss. 361–365.
  • Dönmez, F., Ayas, N., 2021, "Synthesis of Ni/TiO2 catalyst by sol-gel method for hydrogen production from sodium borohydride", International Journal of Hydrogen Energy, Cilt 46, Sayı 57, ss. 29314–29322.
  • Dou, S., Zhou, S., Huang, H., Yan, P., Shoko, E., Isimjan, T. T., Yang, X., 2020, "Metal–Organic Framework (MOF)-Derived Electron-Transfer Enhanced Homogeneous PdO-Rich Co3O4 as a Highly Efficient Bifunctional Catalyst for Sodium Borohydride Hydrolysis and 4-Nitrophenol Reduction", Chemistry - A European Journal, Cilt 26, Sayı 70, ss. 16923–16931.
  • García-Zaleta, D. S., Torres-Huerta, A. M., Domínguez-Crespo, M. A., García-Murillo, A., Silva-Rodrigo, R., López González, R., 2016, "Influence of Phases Content on Pt/TiO2, Pd/TiO 2 Catalysts for Degradation of 4-Chlorophenol at Room Temperature", Journal of Nanomaterials, Cilt 2016.
  • Gislon, P., Prosini, P. P., 2011, "Devices for producing hydrogen via NaBH4 and LiH hydrolysis", International Journal of Hydrogen Energy, Cilt 36, Sayı 1, ss. 240–246.
  • Hariharan, D., Thangamuniyandi, P., Selvakumar, P., Devan, U., Pugazhendhi, A., Vasantharaja, R., Nehru, L. C., 2019, "Green approach synthesis of Pd@TiO2 nanoparticles: characterization, visible light active picric acid degradation and anticancer activity", Process Biochemistry, Cilt 87, ss. 83–88.
  • Huang, Y. H., Su, C. C., Wang, S. L., Lu, M. C., 2012, "Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis", Energy, Cilt 46, Sayı 1, ss. 242–247.
  • Huff, C., Long, J. M., Heyman, A., Abdel-Fattah, T. M., 2018, "Palladium Nanoparticle Multiwalled Carbon Nanotube Composite as Catalyst for Hydrogen Production by the Hydrolysis of Sodium Borohydride", ACS Applied Energy Materials, Cilt 1, Sayı 9, ss. 4635–4640.
  • Izgi, M. S., Şahin, Ö., Saka, C., 2016, "Hydrogen production from NaBH4 using Co-Cu-B catalysts prepared in methanol: Effect of plasma treatment", International Journal of Hydrogen Energy, Cilt 41, Sayı 3, ss. 1600–1608.
  • Kao, H. Y., Lin, C. C., Hung, C. J., Hu, C. C., 2018, "Kinetics of hydrogen generation on NaBH4 powders using cobalt catalysts", Journal of the Taiwan Institute of Chemical Engineers, Cilt 87, ss. 123–130.
  • Ke, D., Tao, Y., Li, Y., Zhao, X., Zhang, L., Wang, J., Han, S., 2015, "Kinetics study on hydrolytic dehydrogenation of alkaline sodium borohydride catalyzed by Mo-modified Co–B nanoparticles", International Journal of Hydrogen Energy, Cilt 40, Sayı 23, ss. 7308–7317.
  • Kılınç, D., Şahin, Ö., 2019, "Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation", International Journal of Hydrogen Energy, Cilt 44, Sayı 34, ss. 18858–18865.
  • Kiren, B., Ayas, N., 2021, "Nickel modified dolomite in the hydrogen generation from sodium borohydride hydrolysis", International Journal of Hydrogen Energy.
  • Kojima, Y., Kawai, Y., Kimbara, M., Nakanishi, H., Matsumoto, S., 2004, "Hydrogen generation by hydrolysis reaction of lithium borohydride", International Journal of Hydrogen Energy, Cilt 29, Sayı 12, ss. 1213–1217.
  • Lee, J., Shin, H., Choi, K. S., Lee, J., Choi, J. Y., Yu, H. K., 2019, "Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation". International Journal of Hydrogen Energy, Cilt 44, Sayı 5, ss. 2943–2950.
  • Li, R., Zhang, F., Zhang, J., Dong, H., 2021, "Catalytic hydrolysis of NaBH4 over titanate nanotube supported Co for hydrogen production", International Journal of Hydrogen Energy.
  • Li, Y. T., Zhang, X. L., Peng, Z. K., Liu, P., Zheng, X. C., 2020, "Highly efficient hydrolysis of ammonia borane using ultrafine bimetallic RuPd nanoalloys encapsulated in porous g-C3N4", Fuel, Cilt 277, ss. 118243.
  • Liang, W., Du, X., Zhu, Y., Ren, S., Li, J., 2020, "Catalytic Oxidation of Chlorobenzene over Pd-TiO 2 /Pd-Ce/TiO2 Catalysts", Catalysts, Cilt 10, Sayı3, ss. 347.
  • Liu, W., Cai, H., Lu, P., Xu, Q., Zhongfu, Y., Dong, J., 2013, "Polymer hydrogel supported Pd–Ni–B nanoclusters as robust catalysts for hydrogen production from hydrolysis of sodium borohydride", International Journal of Hydrogen Energy, Cilt 38, Sayı 22, ss. 9206–9216.
  • Lu, Y. C., Chen, M. S., Chen, Y. W., 2012, "Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2", International Journal of Hydrogen Energy, Cilt 37, Sayı 5, ss. 4254–4258.
  • Netskina, O. V., Kochubey, D. I., Prosvirin, I. P., Kellerman, D. G., Simagina, V. I., Komova, O. V., 2014, "Role of the electronic state of rhodium in sodium borohydride hydrolysis", Journal of Molecular Catalysis A: Chemical, Cilt 390, ss. 125–132.
  • Nie, M., Sun, H., Liao, J., Li, Q., Xue, Z., Xue, F., Liu, F., Wu, M., Gao, T. and Teng, L., 2021, "Study on the catalytic performance of Pd/TiO2 electrocatalyst for hydrogen evolution reaction", International Journal of Hydrogen Energy, Cilt 46, Sayı 9, ss. 6441–6447.
  • Ozkan, U. S., Kumthekar, M. W., Karakas, G., 1998, "Characterization and temperature-programmed studies over Pd/TiO2 catalysts for NO reduction with methane", Catalysis Today, Cilt 40, Sayı 1, ss. 3–14.
  • Patel, N., Patton, B., Zanchetta, C., Fernandes, R., Guella, G., Kale, A., Miotello, A., 2008, "Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride", International Journal of Hydrogen Energy, Cilt 33, Sayı 1, ss. 287–292.
  • Rakap, M., Kalu, E. E., Özkar, S., 2011, "Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution", Journal of Alloys and Compounds, Cilt 509, Sayı 25, ss. 7016–7021.
  • Selvitepe, N., Balbay, A., Saka, C., 2019, "Optimisation of sepiolite clay with phosphoric acid treatment as support material for CoB catalyst and application to produce hydrogen from the NaBH4 hydrolysis", International Journal of Hydrogen Energy, Cilt 44, Sayı 31, ss. 16387–16399.
  • Shi, L., Xie, W., Jian, Z., Liao, X., Wang, Y., 2019, "Graphene modified Co–B catalysts for rapid hydrogen production from NaBH4 hydrolysis", International Journal of Hydrogen Energy, Cilt 44, Sayı 33, ss. 17954–17962.
  • Tonbul, Y., Akbayrak, S., Özkar, S., 2016, "Palladium(0) nanoparticles supported on ceria: Highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane", International Journal of Hydrogen Energy, Cilt 41, Sayı 26, ss. 11154–11162.
  • Tuan, D. D., Lin, K. Y. A., 2018, "Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride", Chemical Engineering Journal, Cilt 351, ss. 48–55.
  • Ugale, A. D., Ghodke, N. P., Kang, G.-S., Nam, K.-B., Bhoraskar, S. V., Mathe, V. L., Yoo, J. B., 2021, "Cost-effective synthesis of carbon loaded Co3O4 for controlled hydrogen generation via NaBH4 hydrolysis", International Journal of Hydrogen Energy.
  • Uzundurukan, A., Devrim, Y., 2019, "Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: A kinetic study", International Journal of Hydrogen Energy, Cilt 44, Sayı 33, ss. 17586–17594.
  • Wang, Y., Zou, K., Zhang, D., Cao, Z., Zhang, K., Xie, Y., Li, G. and Bai, S., 2020, "Cobalt–copper–boron nanoparticles as catalysts for the efficient hydrolysis of alkaline sodium borohydride solution", International Journal of Hydrogen Energy, Cilt 45, Sayı 16, ss. 9845–9853.
  • Weng, B., Wu, Z., Li, Z., Yang, H., Leng, H., 2011, "Enhanced hydrogen generation by hydrolysis of LiBH4 doped with multiwalled carbon nanotubes for micro proton exchange membrane fuel cell application", Journal of Power Sources, Cilt 196, Sayı 11, ss. 5095–5101.
  • Wu, C., Guo, J., Zhang, J., Zhao, Y., Tian, J., Isimjan, T. T., Yang, X., 2019, "Palladium nanoclusters decorated partially decomposed porous ZIF-67 polyhedron with ultrahigh catalytic activity and stability on hydrogen generation", Renewable Energy, Cilt 136, ss. 1064–1070.
  • Xu, F., Liu, X., 2021, "Magnetic Co-Pd/C Nanocomposites for Hydrogen Evolution upon the Hydrolytic Dehydrogenation of NH3BH3, NaBH4, and Me2NHBH3", ACS Applied Nano Materials, Cilt 4, Sayı 7, ss. 7479–7485.
  • Zhang, H., Zhang, L., Rodríguez-Pérez, I.A., Miao, W., Chen, K., Wang, W., Li, Y. and Han, S., 2021, "Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis", Applied Surface Science, Cilt 540, ss. 148296.
  • Zhang, X., Zhang, Q., Xu, B., Liu, X., Zhang, K., Fan, G., Jiang, W., 2020, "Efficient Hydrogen Generation from the NaBH4 Hydrolysis by Cobalt-Based Catalysts: Positive Roles of Sulfur-Containing Salts", ACS Applied Materials and Interfaces, Cilt 12, Sayı 8, ss. 9376–9386.
  • Zou, Y. C., Nie, M., Huang, Y. M., Wang, J. Q., Liu, H. L., 2011, "Kinetics of NaBH4 hydrolysis on carbon-supported ruthenium catalysts", International Journal of Hydrogen Energy, Cilt 36, Sayı 19, ss. 12343–12351.

Synthesis of Pd/TiO2 Catalyst and Determination of Its Activity in Hydrogen Production from Sodium Borohydride

Year 2021, , 66 - 78, 30.12.2021
https://doi.org/10.36306/konjes.997854

Abstract

Hydrogen is an environmentally friendly energy carrier that can be a sustainable solution to the increasing energy demand, produced from renewable energy sources. For the storage and transmission of hydrogen, metal borohydrides stand out with their hydrogen storage capacities. In this study, Pd/TiO2 catalyst was synthesized by sol-gel method and characterized by X-Ray Diffractometry (XRD), Brunauer, Emmett-Teller (BET), X-Ray Fluorescence (XRF), Scanning Electron Microscope- Energy Dispersive X‑Ray (SEM-EDX) techniques. The activity studies of the synthesized catalyst were carried out in the hydrolysis reaction of NaBH4 to produce hydrogen. Experimental studying conditions were determined as 100 mg NaBH4, 100 mg catalyst, 5 mL 0.25 M NaOH and three different reaction temperature parameters (20, 40 and 60 oC) were tested. The highest hydrogen yield (100%) and hydrogen production rate (102 mL/gcat.min) were obtained at 60 oC reaction temperature. In the reusability tests of the catalyst, a decrease in activity was observed after the first 4 uses. By applying the nth order reaction kinetics model to the NaBH4 hydrolysis reaction, the reaction rate degree was determined to be 0.7. The activation energy was calculated as 33.23 kJ/mol with the Arrhenius equation.

Project Number

1708F481

References

  • Akbayrak, S., Özçifçi, Z., Tabak, A., 2019, "Noble metal nanoparticles supported on activated carbon: Highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane", Journal of Colloid and Interface Science, Cilt 546, ss. 324–332.
  • Babu, N. S., Lingaiah, N., Pasha, N., Kumar, J. V., Prasad, P. S. S., 2009, "Influence of particle size and nature of Pd species on the hydrodechlorination of chloroaromatics: Studies on Pd/TiO2 catalysts in chlorobenzene conversion", Catalysis Today, Cilt 141 Sayı (1–2), ss. 120–124.
  • Bozkurt, G., Özer, A., Yurtcan, A. B., 2019, "Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4", Energy, Cilt 180, ss. 702–713.
  • Ceyhan, A. A., Edebali, S., Fangaj, E., 2020, "A study on hydrogen generation from NaBH4 solution using Co-loaded resin catalysts". International Journal of Hydrogen Energy, Cilt 45, Sayı 60, ss. 34761–34772.
  • Chen, K., Ouyang, L., Wang, H., Liu, J., Shao, H., Zhu, M., 2020, "A high-performance hydrogen generation system: Hydrolysis of LiBH4-based materials catalyzed by transition metal chlorides", Renewable Energy, Cilt 156, ss. 655–664.
  • Crisafulli, C., Scir, S., Salanitri, M., Zito, R., Calamia, S., 2011, "Hydrogen production through NaBH4 hydrolysis over supported Ru catalysts: An insight on the effect of the support and the ruthenium precursor", International Journal of Hydrogen Energy, Cilt 36 Sayı 6, ss. 3817–3826.
  • Colak, T. O., Tuc Altaf, C., Minkina, V. G., Shabunya, S. I., Sankir, M., Demirci Sankir, N., Kalinin, V. I., 2021, "Efficient Hydrogen Generation with Co3O4@ TiO2-g-C3N4 Composite Catalyst via Catalytic NaBH4 Hydrolysis", Catalysis Letters, ss. 1-10.
  • Dai, P., Zhao, X., Xu, D., Wang, C., Tao, X., Liu, X., Gao, J., 2019, "Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor", International Journal of Hydrogen Energy, Cilt 44, Sayı 53, ss. 28463–28470.
  • Dönmez, F., Ayas, N., 2018, "Effect of Ru/C and Ni/TiO2 on the Hydrogen Generation from Metal Hydrides", Journal of Clean Energy Technologies, Cilt 6, Sayı 5, ss. 361–365.
  • Dönmez, F., Ayas, N., 2021, "Synthesis of Ni/TiO2 catalyst by sol-gel method for hydrogen production from sodium borohydride", International Journal of Hydrogen Energy, Cilt 46, Sayı 57, ss. 29314–29322.
  • Dou, S., Zhou, S., Huang, H., Yan, P., Shoko, E., Isimjan, T. T., Yang, X., 2020, "Metal–Organic Framework (MOF)-Derived Electron-Transfer Enhanced Homogeneous PdO-Rich Co3O4 as a Highly Efficient Bifunctional Catalyst for Sodium Borohydride Hydrolysis and 4-Nitrophenol Reduction", Chemistry - A European Journal, Cilt 26, Sayı 70, ss. 16923–16931.
  • García-Zaleta, D. S., Torres-Huerta, A. M., Domínguez-Crespo, M. A., García-Murillo, A., Silva-Rodrigo, R., López González, R., 2016, "Influence of Phases Content on Pt/TiO2, Pd/TiO 2 Catalysts for Degradation of 4-Chlorophenol at Room Temperature", Journal of Nanomaterials, Cilt 2016.
  • Gislon, P., Prosini, P. P., 2011, "Devices for producing hydrogen via NaBH4 and LiH hydrolysis", International Journal of Hydrogen Energy, Cilt 36, Sayı 1, ss. 240–246.
  • Hariharan, D., Thangamuniyandi, P., Selvakumar, P., Devan, U., Pugazhendhi, A., Vasantharaja, R., Nehru, L. C., 2019, "Green approach synthesis of Pd@TiO2 nanoparticles: characterization, visible light active picric acid degradation and anticancer activity", Process Biochemistry, Cilt 87, ss. 83–88.
  • Huang, Y. H., Su, C. C., Wang, S. L., Lu, M. C., 2012, "Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis", Energy, Cilt 46, Sayı 1, ss. 242–247.
  • Huff, C., Long, J. M., Heyman, A., Abdel-Fattah, T. M., 2018, "Palladium Nanoparticle Multiwalled Carbon Nanotube Composite as Catalyst for Hydrogen Production by the Hydrolysis of Sodium Borohydride", ACS Applied Energy Materials, Cilt 1, Sayı 9, ss. 4635–4640.
  • Izgi, M. S., Şahin, Ö., Saka, C., 2016, "Hydrogen production from NaBH4 using Co-Cu-B catalysts prepared in methanol: Effect of plasma treatment", International Journal of Hydrogen Energy, Cilt 41, Sayı 3, ss. 1600–1608.
  • Kao, H. Y., Lin, C. C., Hung, C. J., Hu, C. C., 2018, "Kinetics of hydrogen generation on NaBH4 powders using cobalt catalysts", Journal of the Taiwan Institute of Chemical Engineers, Cilt 87, ss. 123–130.
  • Ke, D., Tao, Y., Li, Y., Zhao, X., Zhang, L., Wang, J., Han, S., 2015, "Kinetics study on hydrolytic dehydrogenation of alkaline sodium borohydride catalyzed by Mo-modified Co–B nanoparticles", International Journal of Hydrogen Energy, Cilt 40, Sayı 23, ss. 7308–7317.
  • Kılınç, D., Şahin, Ö., 2019, "Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation", International Journal of Hydrogen Energy, Cilt 44, Sayı 34, ss. 18858–18865.
  • Kiren, B., Ayas, N., 2021, "Nickel modified dolomite in the hydrogen generation from sodium borohydride hydrolysis", International Journal of Hydrogen Energy.
  • Kojima, Y., Kawai, Y., Kimbara, M., Nakanishi, H., Matsumoto, S., 2004, "Hydrogen generation by hydrolysis reaction of lithium borohydride", International Journal of Hydrogen Energy, Cilt 29, Sayı 12, ss. 1213–1217.
  • Lee, J., Shin, H., Choi, K. S., Lee, J., Choi, J. Y., Yu, H. K., 2019, "Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation". International Journal of Hydrogen Energy, Cilt 44, Sayı 5, ss. 2943–2950.
  • Li, R., Zhang, F., Zhang, J., Dong, H., 2021, "Catalytic hydrolysis of NaBH4 over titanate nanotube supported Co for hydrogen production", International Journal of Hydrogen Energy.
  • Li, Y. T., Zhang, X. L., Peng, Z. K., Liu, P., Zheng, X. C., 2020, "Highly efficient hydrolysis of ammonia borane using ultrafine bimetallic RuPd nanoalloys encapsulated in porous g-C3N4", Fuel, Cilt 277, ss. 118243.
  • Liang, W., Du, X., Zhu, Y., Ren, S., Li, J., 2020, "Catalytic Oxidation of Chlorobenzene over Pd-TiO 2 /Pd-Ce/TiO2 Catalysts", Catalysts, Cilt 10, Sayı3, ss. 347.
  • Liu, W., Cai, H., Lu, P., Xu, Q., Zhongfu, Y., Dong, J., 2013, "Polymer hydrogel supported Pd–Ni–B nanoclusters as robust catalysts for hydrogen production from hydrolysis of sodium borohydride", International Journal of Hydrogen Energy, Cilt 38, Sayı 22, ss. 9206–9216.
  • Lu, Y. C., Chen, M. S., Chen, Y. W., 2012, "Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2", International Journal of Hydrogen Energy, Cilt 37, Sayı 5, ss. 4254–4258.
  • Netskina, O. V., Kochubey, D. I., Prosvirin, I. P., Kellerman, D. G., Simagina, V. I., Komova, O. V., 2014, "Role of the electronic state of rhodium in sodium borohydride hydrolysis", Journal of Molecular Catalysis A: Chemical, Cilt 390, ss. 125–132.
  • Nie, M., Sun, H., Liao, J., Li, Q., Xue, Z., Xue, F., Liu, F., Wu, M., Gao, T. and Teng, L., 2021, "Study on the catalytic performance of Pd/TiO2 electrocatalyst for hydrogen evolution reaction", International Journal of Hydrogen Energy, Cilt 46, Sayı 9, ss. 6441–6447.
  • Ozkan, U. S., Kumthekar, M. W., Karakas, G., 1998, "Characterization and temperature-programmed studies over Pd/TiO2 catalysts for NO reduction with methane", Catalysis Today, Cilt 40, Sayı 1, ss. 3–14.
  • Patel, N., Patton, B., Zanchetta, C., Fernandes, R., Guella, G., Kale, A., Miotello, A., 2008, "Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride", International Journal of Hydrogen Energy, Cilt 33, Sayı 1, ss. 287–292.
  • Rakap, M., Kalu, E. E., Özkar, S., 2011, "Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution", Journal of Alloys and Compounds, Cilt 509, Sayı 25, ss. 7016–7021.
  • Selvitepe, N., Balbay, A., Saka, C., 2019, "Optimisation of sepiolite clay with phosphoric acid treatment as support material for CoB catalyst and application to produce hydrogen from the NaBH4 hydrolysis", International Journal of Hydrogen Energy, Cilt 44, Sayı 31, ss. 16387–16399.
  • Shi, L., Xie, W., Jian, Z., Liao, X., Wang, Y., 2019, "Graphene modified Co–B catalysts for rapid hydrogen production from NaBH4 hydrolysis", International Journal of Hydrogen Energy, Cilt 44, Sayı 33, ss. 17954–17962.
  • Tonbul, Y., Akbayrak, S., Özkar, S., 2016, "Palladium(0) nanoparticles supported on ceria: Highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane", International Journal of Hydrogen Energy, Cilt 41, Sayı 26, ss. 11154–11162.
  • Tuan, D. D., Lin, K. Y. A., 2018, "Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride", Chemical Engineering Journal, Cilt 351, ss. 48–55.
  • Ugale, A. D., Ghodke, N. P., Kang, G.-S., Nam, K.-B., Bhoraskar, S. V., Mathe, V. L., Yoo, J. B., 2021, "Cost-effective synthesis of carbon loaded Co3O4 for controlled hydrogen generation via NaBH4 hydrolysis", International Journal of Hydrogen Energy.
  • Uzundurukan, A., Devrim, Y., 2019, "Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: A kinetic study", International Journal of Hydrogen Energy, Cilt 44, Sayı 33, ss. 17586–17594.
  • Wang, Y., Zou, K., Zhang, D., Cao, Z., Zhang, K., Xie, Y., Li, G. and Bai, S., 2020, "Cobalt–copper–boron nanoparticles as catalysts for the efficient hydrolysis of alkaline sodium borohydride solution", International Journal of Hydrogen Energy, Cilt 45, Sayı 16, ss. 9845–9853.
  • Weng, B., Wu, Z., Li, Z., Yang, H., Leng, H., 2011, "Enhanced hydrogen generation by hydrolysis of LiBH4 doped with multiwalled carbon nanotubes for micro proton exchange membrane fuel cell application", Journal of Power Sources, Cilt 196, Sayı 11, ss. 5095–5101.
  • Wu, C., Guo, J., Zhang, J., Zhao, Y., Tian, J., Isimjan, T. T., Yang, X., 2019, "Palladium nanoclusters decorated partially decomposed porous ZIF-67 polyhedron with ultrahigh catalytic activity and stability on hydrogen generation", Renewable Energy, Cilt 136, ss. 1064–1070.
  • Xu, F., Liu, X., 2021, "Magnetic Co-Pd/C Nanocomposites for Hydrogen Evolution upon the Hydrolytic Dehydrogenation of NH3BH3, NaBH4, and Me2NHBH3", ACS Applied Nano Materials, Cilt 4, Sayı 7, ss. 7479–7485.
  • Zhang, H., Zhang, L., Rodríguez-Pérez, I.A., Miao, W., Chen, K., Wang, W., Li, Y. and Han, S., 2021, "Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis", Applied Surface Science, Cilt 540, ss. 148296.
  • Zhang, X., Zhang, Q., Xu, B., Liu, X., Zhang, K., Fan, G., Jiang, W., 2020, "Efficient Hydrogen Generation from the NaBH4 Hydrolysis by Cobalt-Based Catalysts: Positive Roles of Sulfur-Containing Salts", ACS Applied Materials and Interfaces, Cilt 12, Sayı 8, ss. 9376–9386.
  • Zou, Y. C., Nie, M., Huang, Y. M., Wang, J. Q., Liu, H. L., 2011, "Kinetics of NaBH4 hydrolysis on carbon-supported ruthenium catalysts", International Journal of Hydrogen Energy, Cilt 36, Sayı 19, ss. 12343–12351.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Fahriye Dönmez 0000-0002-2924-9091

Nezihe Ayas 0000-0002-5166-1461

Project Number 1708F481
Publication Date December 30, 2021
Submission Date September 20, 2021
Acceptance Date November 8, 2021
Published in Issue Year 2021

Cite

IEEE F. Dönmez and N. Ayas, “Pd/TiO2 KATALİZÖRÜNÜN SENTEZİ VE SODYUM BORHİDRÜRDEN HİDROJEN ÜRETİMİNDE AKTİVİTESİNİN BELİRLENMESİ”, KONJES, vol. 9, pp. 66–78, 2021, doi: 10.36306/konjes.997854.