Concept Design Of an Aluminum One-Piece Driveshaft for Pick-up Truck Applications
Year 2021,
Volume: 9 Issue: 1, 156 - 163, 02.03.2021
Muzaffer Kasaba
,
Efe Işık
,
Sedat Tarakçı
Abstract
Driveshafts are the driveline elements that transfers torque and rotational motion which is received from the engine to the rear axles. In order to meet the high torque handling requirements, driveshaft components are usually made up of steel. Weight reduction in steel parts can often be limited due to the boundary conditions of geometries. For this reason, applications developed with low density parts such as aluminum gain importance. Within the scope of this study, engineering calculations for aluminum cardan shaft for pick-up style light commercial vehicle applications were performed and the calculations were verified with finite element analysis. As a result of the corrections, deviation of 1% for strength calculations and 8% for natural frequency calculations was calculated between the two methods, and it was determined that the deviation values were acceptable. The yield limits and safety coefficients of the aluminum material used were calculated for the unit parts with the results obtained with finite elements. It has been determined that the safety coefficients obtained are suitable for driveshafts.
References
- Dai, G. L., Hak, S. K., Jong, W. K., Jin, K. K., 2004, “Design and manufacture of an automotive hybrid aluminum/composite drive shaft” Composite Structures 63, 87–99.
- Durk, H. C., Dai, G. L., Jin, H. C., 1997, “Manufacture of one-piece automotive drive shafts with aluminum and composite materials”, Vol. 38, 309-319 Hak, S. K., Byung, C. K., Tae, S. L., Dai, G. L., 2004, “Foreign objects impact damage characteristics of aluminum/composite hybrid drive shaft”, Composite Structures 66, 377–389.
- Birol, Y., Gokcil, E., Guvenc, M., Akdi S., 2016, “Processing of high strength ENAW 6082 forgings without a solution heat treatment” Materials Science & Engineering A, 674, 25–32.
- Harshal, B., Viraj, S., Baskar, P., 2013, “Material Optimization and Weight Reduction of Drive Shaft Using Composite Material” IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), Volume 10, Issue 1, 39-46.
- Hirsch, J., 1999, “Light Metal World, Light Metal Age”, p.124.
- Bouquerel, J., Diawara, B., Dubois, A., Dubar, M., Vogt, J.B., Najjar, D., “Investigations of the microstructural response to a cold forging process of the 6082-T6 alloy”, Materials and Design 68 (2015) 245–258.
- Störzel, K., Bruder, T., Hanselka, H., “Durability of welded aluminium extrusion profiles and aluminium sheets in vehicle structures, International Journal of Fatigue 34 (2012) 76–85
- Vidit, G., Manabu, E., Toshiya, O., Syohei, Y., “A study on fatigue behavior of MIG-welded Al-Mg alloy with different fillerwire materials under mean stress”, International Journal of Fatigue 107 (2018) 119–129
- Ruan, Y., Qiu , X.M., Gong , W.B., Sun, D.Q., Li,, Y.P., “ Mechanical properties and microstructures of 6082-T6 joint welded by twin wire metal inert gas arc welding with the SiO2 flux, Materials and Design 35 (2012) 20–24
- Kammuluri, B., Venkata, S., Ramakotaiah, K., 2016, “Hybrid materials of aluminium” Materials Today: Proceedings 3, 4140–4145.
- Khalid, Y. A., Mutasher, S.A., Sahari, B.B., Hamouda, A.M.S., 2007, “Bending fatigue behavior of hybrid aluminum/composite drive shafts”, Materials and Design, 28, 329–334.
- Mutasher, S.A., 2019, “Prediction of the torsional strength of the hybrid aluminum/composite drive shaft” Materials and Design 30, 215–227.
- Rompicharla, R. P., Rambabu K., 2012, “Design and Optimization of Drive Shaft with Composite Materials” Vol.2, Issue.5, 3422-3428.
- SAE International, 1991, “Universal Joint and Driveshaft Design Manuel” The Society of Automotive Engineers.
- Young, C., Kim, D., U., Kang, B., Y., Park, D., K., Lee, D., J., Lee, S., W., Shin, H., T., 2013, “Forming of the precision aluminum tube for a light weight driveshaft” Journal of Mechanical Science and Technology, Volume 27, Issue 11, pp 3445–3449.
- Andrews, J., 2020, “Off-road vehicle four-wheel drive systems explained” https://www.fwi.co.uk/
PICK-UP HAFİF KAMYON UYGULAMALARI İÇİN TEK PARÇALI ALÜMİNYUM KARDAN MİLİ KONSEPT TASARIMI
Year 2021,
Volume: 9 Issue: 1, 156 - 163, 02.03.2021
Muzaffer Kasaba
,
Efe Işık
,
Sedat Tarakçı
Abstract
Kardan milleri, motordan aldığı torku ve dönme hareketini arka akslara ileten bir aktarma organı elemanıdır. Yüksek tork taşıma gerekliliklerini karşılamak amacıyla, hafif ticari araç uygulamalarında kullanılan kardan milleri çelik malzeme kullanılarak üretilmektedir. Çelik malzeme kullanılarak üretilmiş kardan mili ve parçalarında ağırlık azaltma, geometrilerin sınır koşulları nedeniyle çoğu zaman kısıtlı olabilir. Bu nedenle alüminyum gibi düşük yoğunluklu malzemeler kullanılarak geliştirilen uygulamalar önem kazanmaktadır. Bu çalışma kapsamında pick-up tarzı hafif ticari araç uygulamalarında kullanılmak üzere alüminyum kardan mili için mühendislik hesapları gerçekleştirilmiş ve sonlu elemanlar analizleri ile hesaplar doğrulanmıştır. Doğrulmalar sonucunda iki yöntem arasında dayanım hesaplarında %1, doğal frekans hesaplarına %8 sapma hesaplanmıştır ve sapma değerlerinin kabul edilebilir olduğu belirlenmiştir. Birim parçaların, için sonlu elemanlar ile elde edilen sonuçlar kullanılan alüminyum malzemenin akma limitleri ile güvenlik katsayıları hesaplanmıştır. Elde edilen güvenlik katsayıları kardan milleri için uygun olduğu tespit edilmiştir.
References
- Dai, G. L., Hak, S. K., Jong, W. K., Jin, K. K., 2004, “Design and manufacture of an automotive hybrid aluminum/composite drive shaft” Composite Structures 63, 87–99.
- Durk, H. C., Dai, G. L., Jin, H. C., 1997, “Manufacture of one-piece automotive drive shafts with aluminum and composite materials”, Vol. 38, 309-319 Hak, S. K., Byung, C. K., Tae, S. L., Dai, G. L., 2004, “Foreign objects impact damage characteristics of aluminum/composite hybrid drive shaft”, Composite Structures 66, 377–389.
- Birol, Y., Gokcil, E., Guvenc, M., Akdi S., 2016, “Processing of high strength ENAW 6082 forgings without a solution heat treatment” Materials Science & Engineering A, 674, 25–32.
- Harshal, B., Viraj, S., Baskar, P., 2013, “Material Optimization and Weight Reduction of Drive Shaft Using Composite Material” IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), Volume 10, Issue 1, 39-46.
- Hirsch, J., 1999, “Light Metal World, Light Metal Age”, p.124.
- Bouquerel, J., Diawara, B., Dubois, A., Dubar, M., Vogt, J.B., Najjar, D., “Investigations of the microstructural response to a cold forging process of the 6082-T6 alloy”, Materials and Design 68 (2015) 245–258.
- Störzel, K., Bruder, T., Hanselka, H., “Durability of welded aluminium extrusion profiles and aluminium sheets in vehicle structures, International Journal of Fatigue 34 (2012) 76–85
- Vidit, G., Manabu, E., Toshiya, O., Syohei, Y., “A study on fatigue behavior of MIG-welded Al-Mg alloy with different fillerwire materials under mean stress”, International Journal of Fatigue 107 (2018) 119–129
- Ruan, Y., Qiu , X.M., Gong , W.B., Sun, D.Q., Li,, Y.P., “ Mechanical properties and microstructures of 6082-T6 joint welded by twin wire metal inert gas arc welding with the SiO2 flux, Materials and Design 35 (2012) 20–24
- Kammuluri, B., Venkata, S., Ramakotaiah, K., 2016, “Hybrid materials of aluminium” Materials Today: Proceedings 3, 4140–4145.
- Khalid, Y. A., Mutasher, S.A., Sahari, B.B., Hamouda, A.M.S., 2007, “Bending fatigue behavior of hybrid aluminum/composite drive shafts”, Materials and Design, 28, 329–334.
- Mutasher, S.A., 2019, “Prediction of the torsional strength of the hybrid aluminum/composite drive shaft” Materials and Design 30, 215–227.
- Rompicharla, R. P., Rambabu K., 2012, “Design and Optimization of Drive Shaft with Composite Materials” Vol.2, Issue.5, 3422-3428.
- SAE International, 1991, “Universal Joint and Driveshaft Design Manuel” The Society of Automotive Engineers.
- Young, C., Kim, D., U., Kang, B., Y., Park, D., K., Lee, D., J., Lee, S., W., Shin, H., T., 2013, “Forming of the precision aluminum tube for a light weight driveshaft” Journal of Mechanical Science and Technology, Volume 27, Issue 11, pp 3445–3449.
- Andrews, J., 2020, “Off-road vehicle four-wheel drive systems explained” https://www.fwi.co.uk/