Research Article
BibTex RIS Cite

BETONARME SONLU ELEMAN ANALİZİNDE ALTERNATİF BİR KOHEZİF ÇATLAK MODELİ

Year 2021, Volume: 9 Issue: 2, 507 - 521, 01.06.2021
https://doi.org/10.36306/konjes.778979

Abstract

Beton yapıların hasar değerlendirmelerinde, çatlak yüzeylerindeki kohezif etkileşimi göz önüne alan modeller, güvenilir ve gerçekçi simülasyonlara olanak tanımışlardır. Kohezif modeller, çatlak arayüzeylerinde, çatlak açılma ve kohezif kapanma gerilmeleri arasındaki dengeyi, betonun çekme yumuşaması özelliği ile birlikte göz önüne almaktadır. Bu çalışma, bu kohezif yaklaşımdan kaynaklanarak, kohezif etkileşimin çatlak yüzeylerinde betonun çekme yumuşaması davranışına göre tanımlandığı bir sonlu eleman modeli geliştirmiştir. Nümerik analizler için ABAQUS programı kullanılmıştır. Sunulan kohezif esaslı modelin etkinliğini gösterme amaçlı, diğer simülasyon Genişletilmiş Sonlu Eleman Metodu’nu kullanarak gerçekleştirilmiş ve iki yaklaşımın sonuçları yapısal parametreler bazında karşılaştırılmıştır. İki yaklaşım sonuçları arasındaki yüksek uyum, sunulan kohezif çatlak yaklaşımının doğruluğunu kanıtlamıştır.

References

  • ABAQUS, 2018, Version 6.14 User Manual, Hibbitt, Karlsson and Sorensen Incorporation, Powtucket, Rhode Island, A.B.D.
  • Akkaya, Y., 2006, Düzlem Gerilme Altında Betonarme Elemanların Doğrusal Olmayan Davranışının Sonlu Eleman Yöntemiyle İncelenmesi, Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Bhowmick, S., Liu, G. R., 2018, “A phase-field modeling for brittle fracture and crack propagation based on the cell-based smoothed finite element method”, Engineering Fracture Mechanics, Cilt 204, ss. 369-387.
  • Chang, G.A., Mander, J.B., 1994, Seismic energy based fatigue damage analysis of bridge columns: Part I – Evaluation of seismic capacity, State University of New York, NCEER Teknik Raporu, 43-61, A.B.D.
  • De Borst, R., Remmers, J. J. C., Needleman, A., Abellan, M. A., 2004, “Discrete and smeared crack models for concrete fracture: bridging the gap”, International Journal for Numerical and Analytical Methods in Geomechanics, Cilt 28, No 7-8, ss. 583-607.
  • Dias da Costa, D., Graça e Costa, R., Ranzi, G., Smith, S.T., 2018, “Assessment of the behavior FRP- strengthened RC slabs using a discrete crack model”, Journal of Composites for Construction, Cilt 22, No 6, ss. 1–14.
  • Dirik, H., Yalçınkaya, T., 2018, “Crack path and life prediction under mixed mode cyclic variable amplitude loading through XFEM”, International Journal of Fatigue, Cilt 114, ss. 34-50.
  • Hillerborg, A., Moder, M., Peterson, P.E, 1976, “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements”, Cement and Concrete Research, Cilt 6, ss. 773–782.
  • Islam, M. R., Vallejo, M. J., Tarefder, R.A., 2017, “Crack Propagation in Hot Mix Asphalt Overlay Using Extended Finite-Element Model”, Journal of Materials in Civil Engineering, Cilt 29, Sayı 5, ss. 162- 196.
  • Jendele, L., Cervenka, J., Saouma V., Pukl, R., “On the choice between discrete or smeared approach in practical structural FE analyses of concrete structures”, Fourth International Conference on Analysis of Discontinuous Deformation, Glasgow, 234-248, 6-8 Haziran 2001.
  • Maekawa, K., Okamura, H., Pimanmas, A., 2003, Nonlinear Mechanics of Reinforced Concrete, Taylor&Francis Press, New York, A.B.D.
  • Mander, J.B., Priestley, M.J.N., Park, R., 1988, “Theoretical stress-strain model of confined concrete”, Journal of Structural Engineering, Cilt 114, Sayı 8, ss. 1804-1826.
  • Nikolic, M., Do, X., İbrahimbegovic, A., Nikolic, Z., 2018, “Crack propagation in dynamics by embedded strong discontinuity approach: Enhanced solid versus discrete lattice model”, Computer Methods in Applied Mechanics and Engineering, Cilt 340, ss. 480-499.
  • Ors, D., Okail, H., Zaher, A., 2014, “Modeling of shear deficient beams by the mixed smeared/discrete cracking approach”, Housing and Building National Research Center Journal, Cilt 12., ss. 123-136.
  • Patil, R. U., Mishra, B. K., Singh, I. V., 2019, “A multiscale framework based on phase field method and XFEM to simulate fracture in highly heterogeneous materials”, Theoretical and Applied Fracture Mechanics, Cilt 100., ss. 390-415.
  • Pham, D. C., Cui, X., Lua, J., Zhang, D., “A continuum damage description for a discrete crack modeling approach for delamination migration in composite laminates”, AIAA/ASCE/AHS/ASC Structures: Structural Dynamics and Materials Conference, Florida, 1-13, 15 Haziran 2018.
  • Pommier, S., Gravouil, A., Combescure, A., Moës, N., 2011, Extended Finite Element Method for Crack Propagation, Wiley Publications, New Jersey, A.B.D.
  • Saloustros, S., Pelà, L., Cervera, M., 2015, “A crack-tracking technique for localized cohesive-frictional damage”, Engineering Fracture Mechanics, Cilt 150, ss. 96–114.
  • Shi, Z., 2009, Crack Analysis in Structural Concrete: Theory and Applications, Butterworth and Heinemann Press, New York, A.B.D.
  • TBDY, 2018, Türkiye Bina Deprem Yönetmeliği, T.C. Bayındırlık ve İskan Bakanlığı, Ankara.
  • Tort, C., Hajjar, J.F., 2004, “Damage assessment of rectangular concrete-filled steel tubes for performance-based design”, Earthquake Spectra, Cilt 20, Sayı 4, ss. 1317–1348. Yun, K., Wang, Z., He, L., Liu, J., 2018, “A damage model based on the introduction of a crack direction parameter for FRP composites under quasi-static load”, Composite Structures, Cilt 184, ss. 388- 399.

An Alternative Cohesive Crack Model for Finite Element Analysis of Reinforced Concrete

Year 2021, Volume: 9 Issue: 2, 507 - 521, 01.06.2021
https://doi.org/10.36306/konjes.778979

Abstract

In the damage evaluation of concrete structures, the models based on the cohesive interaction between crack surfaces enable reliable and realistic simulations. The cohesive models take into account the equilibrium between crack opening and cohesive closing stresses at crack interfaces with the tension softening property of concrete. This study stemmed from this cohesive approach and developed the finite element model with discrete crack approach in which the cohesive interaction was defined along crack surfaces according to the tension softening behaviour of concrete. ABAQUS program was used for numerical analysis. In order to demonstrate the efficiency of proposed cohesive based approach, the other simulation was conducted by using Extended Finite Element Method and results of these two approaches were compared according to the structural parameters. The good agreement between the results of two approaches proved the accuracy of the proposed cohesive crack approach.

References

  • ABAQUS, 2018, Version 6.14 User Manual, Hibbitt, Karlsson and Sorensen Incorporation, Powtucket, Rhode Island, A.B.D.
  • Akkaya, Y., 2006, Düzlem Gerilme Altında Betonarme Elemanların Doğrusal Olmayan Davranışının Sonlu Eleman Yöntemiyle İncelenmesi, Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Bhowmick, S., Liu, G. R., 2018, “A phase-field modeling for brittle fracture and crack propagation based on the cell-based smoothed finite element method”, Engineering Fracture Mechanics, Cilt 204, ss. 369-387.
  • Chang, G.A., Mander, J.B., 1994, Seismic energy based fatigue damage analysis of bridge columns: Part I – Evaluation of seismic capacity, State University of New York, NCEER Teknik Raporu, 43-61, A.B.D.
  • De Borst, R., Remmers, J. J. C., Needleman, A., Abellan, M. A., 2004, “Discrete and smeared crack models for concrete fracture: bridging the gap”, International Journal for Numerical and Analytical Methods in Geomechanics, Cilt 28, No 7-8, ss. 583-607.
  • Dias da Costa, D., Graça e Costa, R., Ranzi, G., Smith, S.T., 2018, “Assessment of the behavior FRP- strengthened RC slabs using a discrete crack model”, Journal of Composites for Construction, Cilt 22, No 6, ss. 1–14.
  • Dirik, H., Yalçınkaya, T., 2018, “Crack path and life prediction under mixed mode cyclic variable amplitude loading through XFEM”, International Journal of Fatigue, Cilt 114, ss. 34-50.
  • Hillerborg, A., Moder, M., Peterson, P.E, 1976, “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements”, Cement and Concrete Research, Cilt 6, ss. 773–782.
  • Islam, M. R., Vallejo, M. J., Tarefder, R.A., 2017, “Crack Propagation in Hot Mix Asphalt Overlay Using Extended Finite-Element Model”, Journal of Materials in Civil Engineering, Cilt 29, Sayı 5, ss. 162- 196.
  • Jendele, L., Cervenka, J., Saouma V., Pukl, R., “On the choice between discrete or smeared approach in practical structural FE analyses of concrete structures”, Fourth International Conference on Analysis of Discontinuous Deformation, Glasgow, 234-248, 6-8 Haziran 2001.
  • Maekawa, K., Okamura, H., Pimanmas, A., 2003, Nonlinear Mechanics of Reinforced Concrete, Taylor&Francis Press, New York, A.B.D.
  • Mander, J.B., Priestley, M.J.N., Park, R., 1988, “Theoretical stress-strain model of confined concrete”, Journal of Structural Engineering, Cilt 114, Sayı 8, ss. 1804-1826.
  • Nikolic, M., Do, X., İbrahimbegovic, A., Nikolic, Z., 2018, “Crack propagation in dynamics by embedded strong discontinuity approach: Enhanced solid versus discrete lattice model”, Computer Methods in Applied Mechanics and Engineering, Cilt 340, ss. 480-499.
  • Ors, D., Okail, H., Zaher, A., 2014, “Modeling of shear deficient beams by the mixed smeared/discrete cracking approach”, Housing and Building National Research Center Journal, Cilt 12., ss. 123-136.
  • Patil, R. U., Mishra, B. K., Singh, I. V., 2019, “A multiscale framework based on phase field method and XFEM to simulate fracture in highly heterogeneous materials”, Theoretical and Applied Fracture Mechanics, Cilt 100., ss. 390-415.
  • Pham, D. C., Cui, X., Lua, J., Zhang, D., “A continuum damage description for a discrete crack modeling approach for delamination migration in composite laminates”, AIAA/ASCE/AHS/ASC Structures: Structural Dynamics and Materials Conference, Florida, 1-13, 15 Haziran 2018.
  • Pommier, S., Gravouil, A., Combescure, A., Moës, N., 2011, Extended Finite Element Method for Crack Propagation, Wiley Publications, New Jersey, A.B.D.
  • Saloustros, S., Pelà, L., Cervera, M., 2015, “A crack-tracking technique for localized cohesive-frictional damage”, Engineering Fracture Mechanics, Cilt 150, ss. 96–114.
  • Shi, Z., 2009, Crack Analysis in Structural Concrete: Theory and Applications, Butterworth and Heinemann Press, New York, A.B.D.
  • TBDY, 2018, Türkiye Bina Deprem Yönetmeliği, T.C. Bayındırlık ve İskan Bakanlığı, Ankara.
  • Tort, C., Hajjar, J.F., 2004, “Damage assessment of rectangular concrete-filled steel tubes for performance-based design”, Earthquake Spectra, Cilt 20, Sayı 4, ss. 1317–1348. Yun, K., Wang, Z., He, L., Liu, J., 2018, “A damage model based on the introduction of a crack direction parameter for FRP composites under quasi-static load”, Composite Structures, Cilt 184, ss. 388- 399.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Efe Selman 0000-0001-6853-4197

Publication Date June 1, 2021
Submission Date August 10, 2020
Acceptance Date January 14, 2021
Published in Issue Year 2021 Volume: 9 Issue: 2

Cite

IEEE E. Selman, “BETONARME SONLU ELEMAN ANALİZİNDE ALTERNATİF BİR KOHEZİF ÇATLAK MODELİ”, KONJES, vol. 9, no. 2, pp. 507–521, 2021, doi: 10.36306/konjes.778979.