Research Article
BibTex RIS Cite

İlaç Ko-Kristallerinin Fiziksel Özelliklerinin Çözünme Konsantrasyonuna Etkisinin Analizi

Year 2021, Volume: 9 , 213 - 223, 30.12.2021
https://doi.org/10.36306/konjes.998111

Abstract

Sedef hastalığı bulaşıcı olmayan bir deri hastalığıdır. Hastalığın tedavi yöntemi şiddetine göre değişmektedir. Şiddetli evrelerde ağız yolu ile yapılan tedavilerde, çözünme davranışı, ko-kristali değerlendirmek, çözünme mekanizmasını anlamak ve ilacın biyoyararlanımını tahmin etmek için önemli bir karakterizasyon aşamasıdır. Bu çalışmada sedef hastalığının ağız yoluyla tedavisinde kullanılan ko-kristallerin (i) farklı şekil, (ii) boyutlarının ve (iii) öğütme işleminin çözünme davranışı üzerindeki etkisi ultraviyole-görünür (UV/Vis) spektroskopisi ile analiz edilmiştir. Çözünme konsantrasyonunun değişen fiziksel özellikler ve öğütme işlemi ile birlikte arttığı kanıtlanmıştır.

References

  • Aakeröy, C. B., & Salmon, D. J. (2005). Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm, 7(72), 439–448. https://doi.org/10.1039/b505883j
  • Adhiyaman, R., & Basu, S. K. (2006). Crystal modification of dipyridamole using different solvents and crystallization conditions. International Journal of Pharmaceutics, 321(1–2), 27–34. https://doi.org/10.1016/j.ijpharm.2006.04.021
  • Blagden, N., de Matas, M., Gavan, P. T., & York, P. (2007). Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. In Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2007.05.011
  • Bolourtchian, N., Nokhodchl, A., & Dinarvand, R. (2001). The effect of solvent and crystallization conditions on habit modification of carbamazepine. DARU Journal of Pharmaceutical Sciences 9(1), 12-22.
  • Bukovec, P., Meden, A., Smrkolj, M., & Vrečer, F. (2015). Influence of crystal habit on the dissolution of simvastatin single crystals. Acta Chimica Slovenica, 62(4), 958–966. https://doi.org/10.17344/acsi.2015.1849
  • Chan, E. J., Gao, Q., & Dabros, M. (2014). Understanding the structure details when drying hydrate crystals of pharmaceuticals - Interpretations from diffuse scattering and inter-modulation satellites of a partially dehydrated crystal. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 70(3), 555–567. https://doi.org/10.1107/S2052520614005125
  • Değim, Z. (2009). Öğütme. In Modern Farmasötik Teknoloji (1st ed., pp. 3–8). TEB Eczacılık Akademisi. http://e-kutuphane.teb.org.tr/pdf/tebakademi/modern_farmasotk/3.pdf
  • Dizaj, S. M., Vazifehasl, Z., Salatin, S., Adibkia, K., & Javadzadeh, Y. (2015). Recrystallization of drugs: Effect on dissolution rate. In V. Glebovsky (Ed.), Research in Pharmaceutical Sciences (pp. 191–211). https://www.intechopen.com/books/recrystallization-in-materials processing/recrystallization-of-drugs-effect-on-dissolution-rate
  • Gadade, D. D., Pekamwar, S. S., Lahoti, S. R., Patni, S. D., & Sarode, M. C. (2017). Etodolak’ın ko-kristalizasyonu: Ko-kristalizasyon tahmini, ko-kristal sentezi, katı faz yapı aydınlatma Çalışmaları ve in vitro İlaç salımı. Marmara Pharmaceutical Journal, 21(1), 78–88. https://doi.org/10.12991/marupj.259884
  • Nokhodchi, A., Bolourtchian, N., & Dinarvand, R. (2003). Crystal modification of phenytoin using different solvents and crystallization conditions. International Journal of Pharmaceutics, 250(1), 85–97. https://doi.org/10.1016/S0378-5173(02)00488-X
  • Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., & Trappitt, G. (2011). Pharmaceutical cocrystals: An overview. International Journal of Pharmaceutics, 419(1–2), 1–11. https://doi.org/10.1016/j.ijpharm.2011.07.037
  • Ren, S., Liu, M., Hong, C., Li, G., Sun, J., Wang, J., Zhang, L., & Xie, Y. (2019). The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals. Acta Pharmaceutica Sinica B, 9(1), 59–73. https://doi.org/10.1016/j.apsb.2018.09.008
  • Renkoğlu, P., Çelebier, M., & Arica, B. (2015). HPLC determination of olanzapine and carbamazepine in their nicotinamide cocrystals and investigation of the dissolution profiles of cocrystal tablet formulations. Pharmaceutical Development and Technology, 20(3), 380–384. https://doi.org/10.3109/10837450.2014.882937
  • Ross, S. A., Lamprou, D. A., & Douroumis, D. (2016). Engineering and manufacturing of pharmaceutical co-crystals: A review of solvent-free manufacturing technologies. Chemical Communications, 52(57), 8772–8786. https://doi.org/10.1039/c6cc01289b
  • Schultheiss, N., & Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. Crystal Growth and Design, 9(6), 2950–2967. https://doi.org/10.1021/cg900129f
  • Serrano, D. R., O’Connell, P., Paluch, K. J., Walsh, D., & Healy, A. M. (2016). Cocrystal habit engineering to improve drug dissolution and alter derived powder properties. Journal of Pharmacy and Pharmacology, 68(5), 665–677. https://doi.org/10.1111/jphp.12476
  • Shiraki, K., Takata, N., Takano, R., Hayashi, Y., & Terada, K. (2008). Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharmaceutical Research, 25(11), 2581–2592. https://doi.org/10.1007/s11095-008-9676-2
  • Sun, C., & Grant, D. J. W. (2001). Influence of crystal structure on the tableting properties of sulfamerazine polySun, C., & Grant, D. J. W. (2001). Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharmaceutical Research, 18(3), 274–280. doi:10.1023. Pharmaceutical Research, 18(3), 274–280. https://doi.org/10.1023/A:1011038526805
  • Thakuria, R., Delori, A., Jones, W., Lipert, M. P., Roy, L., & Rodríguez-Hornedo, N. (2013). Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics, 453(1), 101–125. https://doi.org/10.1016/j.ijpharm.2012.10.043

ANALYSIS OF THE EFFECT OF PHYSICAL PROPERTIES OF DRUG CO-CRYSTALS ON DISSOLUTION CONCENTRATION

Year 2021, Volume: 9 , 213 - 223, 30.12.2021
https://doi.org/10.36306/konjes.998111

Abstract

Psoriasis is an itchy and non-contagious skin disease. Its treatment method varies according to the severity of the disease. In oral treatments used in heavy stages, dissolution behavior is a vital characterization parameter for evaluating cocrystal, understanding dissolution mechanism, and predicting bioavailability of the drug. In this study, dissolution of cocrystals used in psoriasis was investigated. Effect of (i) different shapes, (ii) sizes, and (iii) grinding of cocrystals on the dissolution were considered with ultraviolet-visible (UV/Vis) spectroscopy. Results show that different physical properties and grinding can significantly increase the dissolution of cocrystals.

References

  • Aakeröy, C. B., & Salmon, D. J. (2005). Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm, 7(72), 439–448. https://doi.org/10.1039/b505883j
  • Adhiyaman, R., & Basu, S. K. (2006). Crystal modification of dipyridamole using different solvents and crystallization conditions. International Journal of Pharmaceutics, 321(1–2), 27–34. https://doi.org/10.1016/j.ijpharm.2006.04.021
  • Blagden, N., de Matas, M., Gavan, P. T., & York, P. (2007). Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. In Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2007.05.011
  • Bolourtchian, N., Nokhodchl, A., & Dinarvand, R. (2001). The effect of solvent and crystallization conditions on habit modification of carbamazepine. DARU Journal of Pharmaceutical Sciences 9(1), 12-22.
  • Bukovec, P., Meden, A., Smrkolj, M., & Vrečer, F. (2015). Influence of crystal habit on the dissolution of simvastatin single crystals. Acta Chimica Slovenica, 62(4), 958–966. https://doi.org/10.17344/acsi.2015.1849
  • Chan, E. J., Gao, Q., & Dabros, M. (2014). Understanding the structure details when drying hydrate crystals of pharmaceuticals - Interpretations from diffuse scattering and inter-modulation satellites of a partially dehydrated crystal. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 70(3), 555–567. https://doi.org/10.1107/S2052520614005125
  • Değim, Z. (2009). Öğütme. In Modern Farmasötik Teknoloji (1st ed., pp. 3–8). TEB Eczacılık Akademisi. http://e-kutuphane.teb.org.tr/pdf/tebakademi/modern_farmasotk/3.pdf
  • Dizaj, S. M., Vazifehasl, Z., Salatin, S., Adibkia, K., & Javadzadeh, Y. (2015). Recrystallization of drugs: Effect on dissolution rate. In V. Glebovsky (Ed.), Research in Pharmaceutical Sciences (pp. 191–211). https://www.intechopen.com/books/recrystallization-in-materials processing/recrystallization-of-drugs-effect-on-dissolution-rate
  • Gadade, D. D., Pekamwar, S. S., Lahoti, S. R., Patni, S. D., & Sarode, M. C. (2017). Etodolak’ın ko-kristalizasyonu: Ko-kristalizasyon tahmini, ko-kristal sentezi, katı faz yapı aydınlatma Çalışmaları ve in vitro İlaç salımı. Marmara Pharmaceutical Journal, 21(1), 78–88. https://doi.org/10.12991/marupj.259884
  • Nokhodchi, A., Bolourtchian, N., & Dinarvand, R. (2003). Crystal modification of phenytoin using different solvents and crystallization conditions. International Journal of Pharmaceutics, 250(1), 85–97. https://doi.org/10.1016/S0378-5173(02)00488-X
  • Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., & Trappitt, G. (2011). Pharmaceutical cocrystals: An overview. International Journal of Pharmaceutics, 419(1–2), 1–11. https://doi.org/10.1016/j.ijpharm.2011.07.037
  • Ren, S., Liu, M., Hong, C., Li, G., Sun, J., Wang, J., Zhang, L., & Xie, Y. (2019). The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals. Acta Pharmaceutica Sinica B, 9(1), 59–73. https://doi.org/10.1016/j.apsb.2018.09.008
  • Renkoğlu, P., Çelebier, M., & Arica, B. (2015). HPLC determination of olanzapine and carbamazepine in their nicotinamide cocrystals and investigation of the dissolution profiles of cocrystal tablet formulations. Pharmaceutical Development and Technology, 20(3), 380–384. https://doi.org/10.3109/10837450.2014.882937
  • Ross, S. A., Lamprou, D. A., & Douroumis, D. (2016). Engineering and manufacturing of pharmaceutical co-crystals: A review of solvent-free manufacturing technologies. Chemical Communications, 52(57), 8772–8786. https://doi.org/10.1039/c6cc01289b
  • Schultheiss, N., & Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. Crystal Growth and Design, 9(6), 2950–2967. https://doi.org/10.1021/cg900129f
  • Serrano, D. R., O’Connell, P., Paluch, K. J., Walsh, D., & Healy, A. M. (2016). Cocrystal habit engineering to improve drug dissolution and alter derived powder properties. Journal of Pharmacy and Pharmacology, 68(5), 665–677. https://doi.org/10.1111/jphp.12476
  • Shiraki, K., Takata, N., Takano, R., Hayashi, Y., & Terada, K. (2008). Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharmaceutical Research, 25(11), 2581–2592. https://doi.org/10.1007/s11095-008-9676-2
  • Sun, C., & Grant, D. J. W. (2001). Influence of crystal structure on the tableting properties of sulfamerazine polySun, C., & Grant, D. J. W. (2001). Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharmaceutical Research, 18(3), 274–280. doi:10.1023. Pharmaceutical Research, 18(3), 274–280. https://doi.org/10.1023/A:1011038526805
  • Thakuria, R., Delori, A., Jones, W., Lipert, M. P., Roy, L., & Rodríguez-Hornedo, N. (2013). Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics, 453(1), 101–125. https://doi.org/10.1016/j.ijpharm.2012.10.043
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Sinem Elmas 0000-0002-9745-9680

Fatma Elif Genceli Güner This is me 0000-0001-6201-6719

Publication Date December 30, 2021
Submission Date October 14, 2021
Acceptance Date December 27, 2021
Published in Issue Year 2021 Volume: 9

Cite

IEEE S. Elmas and F. E. Genceli Güner, “ANALYSIS OF THE EFFECT OF PHYSICAL PROPERTIES OF DRUG CO-CRYSTALS ON DISSOLUTION CONCENTRATION”, KONJES, vol. 9, pp. 213–223, 2021, doi: 10.36306/konjes.998111.