Research Article
BibTex RIS Cite

POLİETİLEN GLİKOL DİMETİLAKRİLAT DOKU İSKELELERİNİN DENTRİTİK GÖZENEKLERİ GENİŞLETİLMİŞ MEZOGÖZENEKLİ SİLİKA NANOPARÇACIKLAR İLE KATKILANDIRILMASI VE IN VITRO İNCELEMELERİ

Year 2022, Volume: 10 Issue: 1, 229 - 239, 01.03.2022
https://doi.org/10.36306/konjes.1027750

Abstract

Bu çalışmada, üç boyutlu (3D) polietilen glikol dimetakrilat (PEGDMA) hidrojel doku iskeleleri hazırlanmış ve hazırlanan doku iskelelerine hücre ekimi doku iskelesi üzerine ve kapsülleme yapılarak iki farklı hücre ekimi metodunu desteklemesi için dentritik mezogözenekli silika nanoparçacık (dMSN) ile katkılandırılması gerçekleştirilmiştir. Yapılan incelemelerle, dMSN'lerin hücre canlılığına yardımcı olmak için yapı iskelelerinin mekanik ve biyolojik aktivitesini düzenleme kapasitesi araştırılmıştır. dMSN'lerin hidrodinamik boyutu, net yüzey yükü ve morfolojisi, sırasıyla dinamik ışık saçılımı, zeta potansiyeli ölçümü ve taramalı elektron mikroskobu görüntülemesi ile karakterize edilmiştir. dMSN'lerin farklı konsantrasyonlarda PEGDMA iskelelerine karıştırılmasından sonra, hidrojel iskelelerinin mekanik ve fiziksel değişiklikleri sıkıştırma testleri ve şişme analizi kullanılarak gerçekleştirilmiştir. Murin fibroblast hücrelerinin kültürü için PEGDMA iskele matrisinde dMSN varlığının etkisi, kolorimetrik canlılık analizi ile değerlendirilmiştir. Sonuçlar, dMSN katkılandırmasının, 3D PEGDMA iskelelerinin hassas elastik modülleri ve şişme oranları için faydalı olduğunu göstermiştir. Bu bulgular ışığında, dMSN-PEGDMA iskelesi içinde kapsüllenen hücrelerin, değişen dMSN miktarlarına bağlı olarak canlılık oranlarında değişiklik gözlemlenirken, iskelelerin üstüne ekilen hücreler inkübasyon süresi boyunca artan hücre canlılığı sergilemiştir. Birlikte ele alındığında, bu sonuçlar, dMSN'lerin, 3D doku iskelesinin özelliklerini ve biyolojik aktivitesini düzenlemek için hidrojel iskele sistemlerinde biyomolekül taşıyıcıları olarak kullanılabileceğini ileri sürmektedir.

Supporting Institution

Izmir Katip Celebi University, Bilimsel Araştırmalar Proje Koordinatörlüğü Birimi

Project Number

2019-TYL-FEBE-0009

Thanks

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'na (TÜBİTAK) çalışmalar sırasında Ayşenur Pamukçu'ya “2210/C Ulusal Yüksek Lisans/Master Burs Programı Bilim ve Teknolojide Öncelikli Alanlar” programı kapsamında maddi olarak destek verdiği için teşekkürlerimizi sunarız .

References

  • Baumann, B., Jungst, T., Stichler, S., Feineis, S., Wiltschka, O., Kuhlmann, M., Linden, M. ve Groll, J., 2017, “Control of nanoparticle release kinetics from 3D printed hydrogel scaffolds”, Angew Chem Int Ed, Vol. 56, Issue 16, pp. 4623-4628.
  • Burke, G., Barron, V., Geever, T., Geever, L., Devine, D.M. ve Higginbotham, C.L., 2019, “Evaluation of the materials properties, stability and cell response of a range of PEGDMA hydrogels for tissue engineering applications”, J Mech Behav Biomed Mater, Vol. 99, pp. 1–10.
  • Darouie, S., Ansari, M.S., Rahimi, F., Hashemi, E., Kabirsalmani, M., Dolatshahi-Pirouz, A. ve Arpanaeia, A., 2020, “The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems”, Mater Sci Eng C, Vol. 106, pp. 110259.
  • Fuertes, A.B., Valle-Vigón, P. ve Sevilla, M., 2010, “Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules”, J Colloid Interface Sci, Vol. 349, Issue 1, pp. 173–180.
  • Gaharwar, A.K., Rivera, C., Wu, C-J., Chan, B.K. ve Schmidt, G., 2013, “Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics”, Mater Sci Eng C, Vol. 33, Issue 3, pp. 1800–1807.
  • Gong, J.P., Katsuyama, Y., Kurokawa, T., and Osada, Y., 2003, “Double-Network Hydrogels with Extremely High Mechanical Strength” Adv Mater, Vol. 15, Issue 14, pp. 1155-1158.
  • Heinemann, S., Heinemann, C., Ehrlich, H., Meyer, M., Baltzer, H., Worch, H., ve Hanke, T., 2007, “Novel Biomimetic Hybrid Material Made of Silicified Collagen: Perspectives for Bone Replacement”, Adv. Eng. Mater. Vol. 9, Issue 12, pp. 1061-1068.
  • Huang, W.-S. ve Chu, I.-M., 2019, “Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering”, PLoS ONE, Vol. 14, Issue 1, pp. 1-17.
  • Ingavle, G.C., Gehrke, S.H. ve Detamore, M.S., 2014, “The bioactivity of agarose–PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan”, Biomaterials, Vol. 35, Issue 11, pp. 3558–3570.
  • Kao, K.-C. ve Mou, C.-Y., 2013, “Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent”, Micropor Mesopor Mat, Vol. 169, pp. 7–15.
  • Lam, D., Enright, H.A., Peters, S.K., Moya, M.L., Soscia, D.A., Cadena, J., Alvarado, J.A., Kulp, K.S., Wheeler, E.K. ve Fischer, N.O., 2020, “Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures” J Neurosci Methods, Vol. 329, pp. 108460.
  • Lee, J. H., Park, J. H., Eltohamy, M., Perez, R., Lee, E. J. ve Kim, H. W., 2013, “Collagen gel combined with mesoporous nanoparticles loading nerve growth factor as a feasible therapeutic three-dimensional depot for neural tissue engineering”, RSC Adv, Vol. 3, pp. 24202–24214.
  • Mohammadi, M., Mousavi Shaegh, S.A., Alibolandi, M., Ebrahimzadeh, M.H., Tamayol, A., Jaafari, M.R. ve Ramezani, M., 2018, “Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs”, J Control Release, Vol. 274, pp. 35–55.
  • Noh, M., Choi, Y.H., An, Y.-H., Tahk, D., Cho, S., Yoon, J.W., Jeon, N.L., Park, T.H., Kim, J. ve Hwang, N.S., 2019, “Magnetic Nanoparticle-Embedded Hydrogel Sheet with a Groove Pattern for Wound Healing Application”ACS Biomater Sci Eng, Vol. 5, Issue 8, pp. 3909–3921.
  • Noh, M., Kim, S.-H., Kim, J., Lee, J.-R., Jeong, G.-J., Yoon, J.-K., Kang, S., Bhang, S.H., Yoon, H.H., Lee, J.-C., Hwang, N.S., ve Kim, B.-S., 2017, “Graphene oxide reinforced hydrogels for osteogenic differentiation of human adipose-derived stem cells”, RSC Adv, Vol. 7, Issue 34, pp. 20779–20788.
  • Park, J.Y., Park, S.H., Kim, M.G., Park, S-H., Yoo, T.H. ve Kim, M.S., 2018, “Biomimetic Scaffolds for Bone Tissue Engineering”, Biomimetic Medical Materials: From Nanotechnology to 3D Bioprinting, Vol. 1064, Editor: Noh, I., Springer, Singapore, pp. 109–121.
  • Perera, D., Medini, M., Seethamraju, D., Falkowski, R., White, K., ve Olabisi, R. M., 2018, “The effect of polymer molecular weight and cell seeding density on viability of cells entrapped within PEGDA hydrogel microspheres”, J microencapsul, Vol. 35, Issue 5, pp. 475-481.
  • Rosenholm, J.M., Zhang, J., Linden, M., Sahlgren, C., 2016, “Mesoporous silica nanoparticles in tissue engineering-a perspective”, Nanomedicine, Vol. 11, Issue 4, pp. 391–402.
  • Shen, D., Yang, J., Li, X., Zhou, L., Zhang, R., Li W, Chen, L., Wang, R., Zhang, F. ve Zhao, D., 2014, “Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres”, Nano Lett, Vol. 14, Issue 2, pp. 923–932.
  • Tan, F., Liu, J., Liu, M. ve Wang, J., 2017, “Charge density is more important than charge polarity in enhancing osteoblast-like cell attachment on poly(ethylene glycol)-diacrylate hydrogel”, Mater Sci Eng C, Vol. 76, pp. 330–339.
  • Xu, C., Xiao, L., Cao, Y., He, Y., Lei, C., Xiao, Y., Sun, W., Ahadian, S., Zhou, X., Khademhosseini, A. ve Ye, Q., 2020, “Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration”, Nano Res, Vol. 13, Issue 9, pp. 2323–2331.
  • Zhan, Y., Pan, Y., Chen, B., Lu, J., Zhong, Z. ve Niu, X., 2017, “Strain rate dependent hyperelastic stress-stretch behavior of a silica nanoparticle reinforced poly (ethylene glycol) diacrylate nanocomposite hydrogel”, J Mech Behav Biomed Mater, Vol. 75, pp. 236–243.
  • Zhou, X., Feng, W., Qiu, K., Chen, L., Wang, W., Nie, W., Mo, X. ve He, C., 2015, “BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells”, ACS Appl Mater Interfaces, Vol. 7, Issue 29, pp. 15777–15789.

Integration of Dendritic Mesoporus Silica Nanoparticles with Enlarged Pores into Polyethylene Glycol Dimethacrylate Scaffold and In Vitro Investigations

Year 2022, Volume: 10 Issue: 1, 229 - 239, 01.03.2022
https://doi.org/10.36306/konjes.1027750

Abstract

In this study, three-dimensional (3D) polyethylene glycol dimethacrylate (PEGDMA) hydrogel scaffolds were prepared and doped with dendritic mesoporous silica nanoparticle (dMSN) to support two different cell cultivation methods by cell encapsulation and cell seeding on the prepared scaffolds. During studies, the effect of dMSNs in modulating the mechanical and biological activity of scaffolds was investigated to aid cell viability. Hydrodynamic size, net surface charge, and morphology of dMSN were characterized by dynamic light scattering, zeta potential measurement, and scanning electron microscopy imaging, respectively. After the blending of dMSN into PEGDMA scaffolds at different concentrations, mechanical and physical changes of hydrogel scaffolds were investigated by employing compression tests and swelling analysis. Effect of dMSN presence in PEGDMA scaffold matrix for culture of murine fibroblast cells were evaluated by colorimetric viability analysis. Results demonstrated that the blending of dMSN is beneficial to fine tuning elastic moduli and swelling ratios of 3D hydrogel scaffolds. These findings are endorsed with the viability assays demonstrating that cells encapsulated within dMSN-PEGDMA showed different degrees of viability in relation to dMSN concentration while cells seeded on top of the scaffolds exhibited increased cell viability over incubation time. Taken together, these results suggested that dMSN could be employed as biomolecule carriers in hydrogel scaffold systems to alter desired properties and to regulate the biological activity.

Project Number

2019-TYL-FEBE-0009

References

  • Baumann, B., Jungst, T., Stichler, S., Feineis, S., Wiltschka, O., Kuhlmann, M., Linden, M. ve Groll, J., 2017, “Control of nanoparticle release kinetics from 3D printed hydrogel scaffolds”, Angew Chem Int Ed, Vol. 56, Issue 16, pp. 4623-4628.
  • Burke, G., Barron, V., Geever, T., Geever, L., Devine, D.M. ve Higginbotham, C.L., 2019, “Evaluation of the materials properties, stability and cell response of a range of PEGDMA hydrogels for tissue engineering applications”, J Mech Behav Biomed Mater, Vol. 99, pp. 1–10.
  • Darouie, S., Ansari, M.S., Rahimi, F., Hashemi, E., Kabirsalmani, M., Dolatshahi-Pirouz, A. ve Arpanaeia, A., 2020, “The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems”, Mater Sci Eng C, Vol. 106, pp. 110259.
  • Fuertes, A.B., Valle-Vigón, P. ve Sevilla, M., 2010, “Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules”, J Colloid Interface Sci, Vol. 349, Issue 1, pp. 173–180.
  • Gaharwar, A.K., Rivera, C., Wu, C-J., Chan, B.K. ve Schmidt, G., 2013, “Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics”, Mater Sci Eng C, Vol. 33, Issue 3, pp. 1800–1807.
  • Gong, J.P., Katsuyama, Y., Kurokawa, T., and Osada, Y., 2003, “Double-Network Hydrogels with Extremely High Mechanical Strength” Adv Mater, Vol. 15, Issue 14, pp. 1155-1158.
  • Heinemann, S., Heinemann, C., Ehrlich, H., Meyer, M., Baltzer, H., Worch, H., ve Hanke, T., 2007, “Novel Biomimetic Hybrid Material Made of Silicified Collagen: Perspectives for Bone Replacement”, Adv. Eng. Mater. Vol. 9, Issue 12, pp. 1061-1068.
  • Huang, W.-S. ve Chu, I.-M., 2019, “Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering”, PLoS ONE, Vol. 14, Issue 1, pp. 1-17.
  • Ingavle, G.C., Gehrke, S.H. ve Detamore, M.S., 2014, “The bioactivity of agarose–PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan”, Biomaterials, Vol. 35, Issue 11, pp. 3558–3570.
  • Kao, K.-C. ve Mou, C.-Y., 2013, “Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent”, Micropor Mesopor Mat, Vol. 169, pp. 7–15.
  • Lam, D., Enright, H.A., Peters, S.K., Moya, M.L., Soscia, D.A., Cadena, J., Alvarado, J.A., Kulp, K.S., Wheeler, E.K. ve Fischer, N.O., 2020, “Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures” J Neurosci Methods, Vol. 329, pp. 108460.
  • Lee, J. H., Park, J. H., Eltohamy, M., Perez, R., Lee, E. J. ve Kim, H. W., 2013, “Collagen gel combined with mesoporous nanoparticles loading nerve growth factor as a feasible therapeutic three-dimensional depot for neural tissue engineering”, RSC Adv, Vol. 3, pp. 24202–24214.
  • Mohammadi, M., Mousavi Shaegh, S.A., Alibolandi, M., Ebrahimzadeh, M.H., Tamayol, A., Jaafari, M.R. ve Ramezani, M., 2018, “Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs”, J Control Release, Vol. 274, pp. 35–55.
  • Noh, M., Choi, Y.H., An, Y.-H., Tahk, D., Cho, S., Yoon, J.W., Jeon, N.L., Park, T.H., Kim, J. ve Hwang, N.S., 2019, “Magnetic Nanoparticle-Embedded Hydrogel Sheet with a Groove Pattern for Wound Healing Application”ACS Biomater Sci Eng, Vol. 5, Issue 8, pp. 3909–3921.
  • Noh, M., Kim, S.-H., Kim, J., Lee, J.-R., Jeong, G.-J., Yoon, J.-K., Kang, S., Bhang, S.H., Yoon, H.H., Lee, J.-C., Hwang, N.S., ve Kim, B.-S., 2017, “Graphene oxide reinforced hydrogels for osteogenic differentiation of human adipose-derived stem cells”, RSC Adv, Vol. 7, Issue 34, pp. 20779–20788.
  • Park, J.Y., Park, S.H., Kim, M.G., Park, S-H., Yoo, T.H. ve Kim, M.S., 2018, “Biomimetic Scaffolds for Bone Tissue Engineering”, Biomimetic Medical Materials: From Nanotechnology to 3D Bioprinting, Vol. 1064, Editor: Noh, I., Springer, Singapore, pp. 109–121.
  • Perera, D., Medini, M., Seethamraju, D., Falkowski, R., White, K., ve Olabisi, R. M., 2018, “The effect of polymer molecular weight and cell seeding density on viability of cells entrapped within PEGDA hydrogel microspheres”, J microencapsul, Vol. 35, Issue 5, pp. 475-481.
  • Rosenholm, J.M., Zhang, J., Linden, M., Sahlgren, C., 2016, “Mesoporous silica nanoparticles in tissue engineering-a perspective”, Nanomedicine, Vol. 11, Issue 4, pp. 391–402.
  • Shen, D., Yang, J., Li, X., Zhou, L., Zhang, R., Li W, Chen, L., Wang, R., Zhang, F. ve Zhao, D., 2014, “Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres”, Nano Lett, Vol. 14, Issue 2, pp. 923–932.
  • Tan, F., Liu, J., Liu, M. ve Wang, J., 2017, “Charge density is more important than charge polarity in enhancing osteoblast-like cell attachment on poly(ethylene glycol)-diacrylate hydrogel”, Mater Sci Eng C, Vol. 76, pp. 330–339.
  • Xu, C., Xiao, L., Cao, Y., He, Y., Lei, C., Xiao, Y., Sun, W., Ahadian, S., Zhou, X., Khademhosseini, A. ve Ye, Q., 2020, “Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration”, Nano Res, Vol. 13, Issue 9, pp. 2323–2331.
  • Zhan, Y., Pan, Y., Chen, B., Lu, J., Zhong, Z. ve Niu, X., 2017, “Strain rate dependent hyperelastic stress-stretch behavior of a silica nanoparticle reinforced poly (ethylene glycol) diacrylate nanocomposite hydrogel”, J Mech Behav Biomed Mater, Vol. 75, pp. 236–243.
  • Zhou, X., Feng, W., Qiu, K., Chen, L., Wang, W., Nie, W., Mo, X. ve He, C., 2015, “BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells”, ACS Appl Mater Interfaces, Vol. 7, Issue 29, pp. 15777–15789.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Didem Şen Karaman 0000-0002-2368-9598

Ayşenur Pamukçu

Project Number 2019-TYL-FEBE-0009
Publication Date March 1, 2022
Submission Date November 24, 2021
Acceptance Date February 16, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

IEEE D. Şen Karaman and A. Pamukçu, “POLİETİLEN GLİKOL DİMETİLAKRİLAT DOKU İSKELELERİNİN DENTRİTİK GÖZENEKLERİ GENİŞLETİLMİŞ MEZOGÖZENEKLİ SİLİKA NANOPARÇACIKLAR İLE KATKILANDIRILMASI VE IN VITRO İNCELEMELERİ”, KONJES, vol. 10, no. 1, pp. 229–239, 2022, doi: 10.36306/konjes.1027750.