Research Article
BibTex RIS Cite

Teğet Sınır Şartlarının Ortasından Tekil Yüklü Katmanlı Kompozit Silindirik Panellerin Nonlineer Davranışlarına Etkisi

Year 2022, Volume: 10 Issue: 3, 623 - 633, 01.09.2022
https://doi.org/10.36306/konjes.1020246

Abstract

Bu çalışmada, ortasından düşey tekil yük ile yüklü simetrik ve dengeli katmanlı kompozit silindirik panellerin nonlineer davranışlarında düz kenar teğet sınır şartlarının etkisi incelenmiştir. Bu maksatla, toplam Lagrange formulasyonuna dayanan sekiz düğümlü, dejenere ve doğrusal olmayan bir kabuk sonlu elemanı kullanılmıştır. Nonlineer davranışı gözlemleyebilmek için kiriş uzunluğu yöntemi kullanılmıştır. Öncelikle bazı doğrulama problemleri çözülerek eleman geometrik açıdan doğrusal olmayan analiz için doğrulanmıştır. Daha sonra problem farklı dönel sınır şartları, kalınlık ve katman düzenleri için incelenmiştir. Ankastre paneller için elde edilen neticeler teğet doğrultuda her iki kenar veya sadece bir kenar tutulu olduğunda davranışta önemli bir fark olmadığını göstermektedir. Ancak, basit mesnetli paneller için elde edilen neticeler rijitliğinin sadece bir kenar teğetsel doğrultuda tutulduğunda önemli nispette düştüğünü göstermektedir.

References

  • Almroth, B. O. (1966). Influence of edge conditions on the stability of axially compressed cylindrical shells. AIAA Journal, 4(1), 134-140.
  • Bakshi, K., & Chakravorty, D. (2014). Geometrically linear and nonlinear first-ply failure loads of composite cylindrical shells. Journal of Engineering Mechanics, 140(12), 04014094.
  • Barbosa, J. A. T., & Ferreira, A. J. M. (2009). Geometrically nonlinear analysis of functionally graded plates and shells. Mechanics of Advanced Materials and Structures, 17(1), 40-48.
  • Bathe, K. J., & Bolourchi, S. (1979). Large displacement analysis of three‐dimensional beam structures. International journal for numerical methods in engineering, 14(7), 961-986.
  • Bathe, K. J., & Bolourchi, S. (1980). A geometric and material nonlinear plate and shell element. Computers & structures, 11(1-2), 23-48.
  • Bergan, P. G., Horrigmoe, G., Bråkeland, B., & Søreide, T. H. (1978). Solution techniques for non− linear finite element problems. International Journal for Numerical Methods in Engineering, 12(11), 1677-1696.
  • Cagdas, I. U., & Adali, S. (2012-b). Effect of Fiber Orientation on Buckling and First-Ply Failures of Cylindrical Shear-Deformable Laminates. Journal of Engineering Mechanics, 139(8), 967-978.
  • Cagdas, I., & Adali, S. (2012-a). Design of a laminated composite variable curvature panel under uniaxial compression. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 29(1), 48-64.
  • Chao, W. C., & Reddy, J. N. (1984). Analysis of laminated composite shells using a degenerated 3‐D element. International Journal for Numerical Methods in Engineering, 20(11), 1991-2007.
  • Crisfield, M. A. (1981). A fast incremental/iterative solution procedure that handles “snap-through”. In Computational Methods in Nonlinear Structural and Solid Mechanics (pp. 55-62). Pergamon.
  • de Souza Neto, E. A., Peric, D., & Owen, D. R. (2011). Computational methods for plasticity: theory and applications. John Wiley & Sons.
  • Hieu, P. T., & Tung, H. V. (2019). Thermal buckling and postbuckling of CNT-reinforced composite cylindrical shell surrounded by an elastic medium with tangentially restrained edges. Journal of Thermoplastic Composite Materials, 0892705719853611.
  • Kant, T. (1992). A general fibre-reinforced composite shell element based on a refined shear deformation theory. Computers & Structures, 42(3), 381-388.
  • Librescu, L., & Lin, W. (1997). Vibration of thermomechanically loaded flat and curved panels taking into account geometric imperfections and tangential edge restraints. International journal of solids and structures, 34(17), 2161-2181.
  • Panda, S. K., & Singh, B. N. (2009). Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method. Composite Structures, 91(3), 366-374.
  • Pawsey, S. F., & Clough, R. W. (1971). Improved numerical integration of thick shell finite elements. International journal for numerical methods in engineering, 3(4), 575-586.
  • Ram, K. S., & Babu, T. S. (2002). Buckling of laminated composite shells under transverse load. Composite structures, 55(2), 157-168.
  • Singha, M. K., Ramachandra, L. S., & Bandyopadhyay, J. N. (2006). Nonlinear response of laminated cylindrical shell panels subjected to thermomechanical loads. Journal of engineering mechanics, 132(10), 1088-1095.
  • Sit, M., & Ray, C. (2019). A third order nonlinear model to study the dynamic behaviour of composite laminated structures under thermal effect with experimental verification. Composite Structures, 212, 106-117.
  • Sze, K. Y., Liu, X. H., & Lo, S. H. (2004). Popular benchmark problems for geometric nonlinear analysis of shells. Finite elements in analysis and design, 40(11), 1551-1569.
  • Trang, L. T. N., & Van Tung, H. (2018). Nonlinear stability of CNT-reinforced composite cylindrical panels with elastically restrained straight edges under combined thermomechanical loading conditions. Journal of Thermoplastic Composite Materials, 0892705718805134.
  • Van Tung, H. (2013). Postbuckling behavior of functionally graded cylindrical panels with tangential edge constraints and resting on elastic foundations. Composite Structures, 100, 532-541.
  • Zhou, Y., Stanciulescu, I., Eason, T., & Spottswood, M. (2015). Nonlinear elastic buckling and postbuckling analysis of cylindrical panels. Finite Elements in Analysis and Design, 96, 41-50.

THE INFLUENCE OF TANGENTIAL EDGE RESTRAINTS ON THE NONLINEAR RESPONSE OF LAMINATED COMPOSITE CYLINDRICAL PANELS SUBJECT TO A PINCHING FORCE

Year 2022, Volume: 10 Issue: 3, 623 - 633, 01.09.2022
https://doi.org/10.36306/konjes.1020246

Abstract

In this study, the influence of straight edge tangential restraints on the nonlinear response of symmetrically laminated and balanced composite cylindrical panels subject to a pinching force is investigated. An 8-node degenerated nonlinear shell element, formulation of which is based on the Total Lagrangian Formulation, is employed for geometrically nonlinear analysis and the Arc-Length Method is used to trace the nonlinear path. First, the element is validated for geometrically non-linear analysis by solving two verification problems. Then, numerical results for different rotational boundary conditions are presented for two different stacking sequences, and thickness values. The numerical results presented show that there is no significant difference between the tangentially unrestrained and restrained clamped panels when only one edge is tangentially unrestrained. However, it is observed that the simply supported panels demonstrate a much less stiff behavior when one of the straight edges is tangentially unrestrained.

References

  • Almroth, B. O. (1966). Influence of edge conditions on the stability of axially compressed cylindrical shells. AIAA Journal, 4(1), 134-140.
  • Bakshi, K., & Chakravorty, D. (2014). Geometrically linear and nonlinear first-ply failure loads of composite cylindrical shells. Journal of Engineering Mechanics, 140(12), 04014094.
  • Barbosa, J. A. T., & Ferreira, A. J. M. (2009). Geometrically nonlinear analysis of functionally graded plates and shells. Mechanics of Advanced Materials and Structures, 17(1), 40-48.
  • Bathe, K. J., & Bolourchi, S. (1979). Large displacement analysis of three‐dimensional beam structures. International journal for numerical methods in engineering, 14(7), 961-986.
  • Bathe, K. J., & Bolourchi, S. (1980). A geometric and material nonlinear plate and shell element. Computers & structures, 11(1-2), 23-48.
  • Bergan, P. G., Horrigmoe, G., Bråkeland, B., & Søreide, T. H. (1978). Solution techniques for non− linear finite element problems. International Journal for Numerical Methods in Engineering, 12(11), 1677-1696.
  • Cagdas, I. U., & Adali, S. (2012-b). Effect of Fiber Orientation on Buckling and First-Ply Failures of Cylindrical Shear-Deformable Laminates. Journal of Engineering Mechanics, 139(8), 967-978.
  • Cagdas, I., & Adali, S. (2012-a). Design of a laminated composite variable curvature panel under uniaxial compression. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 29(1), 48-64.
  • Chao, W. C., & Reddy, J. N. (1984). Analysis of laminated composite shells using a degenerated 3‐D element. International Journal for Numerical Methods in Engineering, 20(11), 1991-2007.
  • Crisfield, M. A. (1981). A fast incremental/iterative solution procedure that handles “snap-through”. In Computational Methods in Nonlinear Structural and Solid Mechanics (pp. 55-62). Pergamon.
  • de Souza Neto, E. A., Peric, D., & Owen, D. R. (2011). Computational methods for plasticity: theory and applications. John Wiley & Sons.
  • Hieu, P. T., & Tung, H. V. (2019). Thermal buckling and postbuckling of CNT-reinforced composite cylindrical shell surrounded by an elastic medium with tangentially restrained edges. Journal of Thermoplastic Composite Materials, 0892705719853611.
  • Kant, T. (1992). A general fibre-reinforced composite shell element based on a refined shear deformation theory. Computers & Structures, 42(3), 381-388.
  • Librescu, L., & Lin, W. (1997). Vibration of thermomechanically loaded flat and curved panels taking into account geometric imperfections and tangential edge restraints. International journal of solids and structures, 34(17), 2161-2181.
  • Panda, S. K., & Singh, B. N. (2009). Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method. Composite Structures, 91(3), 366-374.
  • Pawsey, S. F., & Clough, R. W. (1971). Improved numerical integration of thick shell finite elements. International journal for numerical methods in engineering, 3(4), 575-586.
  • Ram, K. S., & Babu, T. S. (2002). Buckling of laminated composite shells under transverse load. Composite structures, 55(2), 157-168.
  • Singha, M. K., Ramachandra, L. S., & Bandyopadhyay, J. N. (2006). Nonlinear response of laminated cylindrical shell panels subjected to thermomechanical loads. Journal of engineering mechanics, 132(10), 1088-1095.
  • Sit, M., & Ray, C. (2019). A third order nonlinear model to study the dynamic behaviour of composite laminated structures under thermal effect with experimental verification. Composite Structures, 212, 106-117.
  • Sze, K. Y., Liu, X. H., & Lo, S. H. (2004). Popular benchmark problems for geometric nonlinear analysis of shells. Finite elements in analysis and design, 40(11), 1551-1569.
  • Trang, L. T. N., & Van Tung, H. (2018). Nonlinear stability of CNT-reinforced composite cylindrical panels with elastically restrained straight edges under combined thermomechanical loading conditions. Journal of Thermoplastic Composite Materials, 0892705718805134.
  • Van Tung, H. (2013). Postbuckling behavior of functionally graded cylindrical panels with tangential edge constraints and resting on elastic foundations. Composite Structures, 100, 532-541.
  • Zhou, Y., Stanciulescu, I., Eason, T., & Spottswood, M. (2015). Nonlinear elastic buckling and postbuckling analysis of cylindrical panels. Finite Elements in Analysis and Design, 96, 41-50.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

İzzet Ufuk Çağdaş 0000-0002-2528-2978

Publication Date September 1, 2022
Submission Date November 7, 2021
Acceptance Date June 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 3

Cite

IEEE İ. U. Çağdaş, “THE INFLUENCE OF TANGENTIAL EDGE RESTRAINTS ON THE NONLINEAR RESPONSE OF LAMINATED COMPOSITE CYLINDRICAL PANELS SUBJECT TO A PINCHING FORCE”, KONJES, vol. 10, no. 3, pp. 623–633, 2022, doi: 10.36306/konjes.1020246.