Research Article
BibTex RIS Cite

ANALYSIS OF PERFORMANCE COEFFICIENTS IN MAXIMUM ELECTRICAL POWER EXTRACTION FROM STAND-ALONE WIND ENERGY CONVERSION SYSTEM

Year 2022, Volume: 10 Issue: 4, 1048 - 1060, 03.12.2022
https://doi.org/10.36306/konjes.1168457

Abstract

Increasing performance and improving efficiency in maximum power extraction from Wind Energy Conversion Systems (WECS) is a quite important research topic. Today, in the large-scale WECS, it is widely aimed to extract the maximum mechanical power from the wind turbine using the Maximum Power Point Tracking (MPPT) unit. Similarly, it can also be targeted to achieve maximum mechanical power in small-scale WECS applications. However, losses occur in structural subsystems and electrical subunits located in WECS. Due to these losses, the overall system efficiency decreases and the characteristic of the system is also affected. The operation of these systems can also be performed via maximum electrical output power extraction, which is one of the most up-to-date ideas. Thus, the overall WECS rather than the wind turbine can be optimally controlled. Eventually, maximum electrical power tracking (MEPT) based designs can provide higher power extraction with higher efficiency than MPPT-based ones. In this paper, considering the system operating concepts with MPPT and MEPT for a stand-alone Permanent Magnet Synchronous Generator (PMSG) based WECS, the changes in performance coefficients at defined focus points in terms of system efficiency are evaluated. Technical and theoretical comparative analyzes are also made for each specific wind speed between 8m/s and 12m/s.

References

  • Barakati, S. M., Kazerani, M., Aplevich, J. D., 2009, “Maximum Power Tracking Control for a Wind Turbine System Including a Matrix Converter”, IEEE Transactions on Energy Conversion, Vol. 24, No. 3, pp. 705-713, doi:10.1109/TEC.2008.2005316.
  • Cheng, M., Zhu, Y., 2014, “The state of the art of wind energy conversion systems and technologies: A review”, Energy Conversion and Management, Vol. 88, pp. 332-347, doi: 10.1016/j.enconman.2014.08.037.
  • Chinmaya, K., Singh, G. K., 2018, ”Performance evaluation of multiphase induction generator in stand‐alone and grid‐connected wind energy conversion system”, IET Renewable Power Generation, Vol. 12, No. 7, pp. 823-831, doi: 10.1049/iet-rpg.2017.0791.
  • Dursun, E. H., Koyuncu, H., Kulaksiz, A. A., 2020, “A novel unified maximum power extraction framework for PMSG based WECS using chaotic particle swarm optimization derivatives”, Engineering Science and Technology, an International Journal, Vol. 24, No. 1, pp. 158-170, doi:10.1016/j.jestch.2020.05.005.
  • Dursun, E. H., Kulaksiz, A. A., 2020a, “MPPT control of PMSG based small-scale wind energy conversion system connected to DC-bus”, International Journal of Emerging Electric Power Systems, Vol. 21, No. 2, pp. 1-13, doi: 10.1515/ijeeps-2019-0188.
  • Dursun, E. H., Kulaksiz, A. A., 2020b, “Second-order sliding mode voltage-regulator for improving MPPT efficiency of PMSG-based WECS”, International Journal of Electrical Power & Energy Systems, Vol. 121, pp. 1-9, doi:10.1016/j.ijepes.2020.106149.
  • Fathabadi, H., 2017, “Novel Maximum Electrical and Mechanical Power Tracking Controllers for Wind Energy Conversion Systems”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol .5, No. 4, pp. 1739-1745, doi:10.1109/JESTPE.2017.2727978.
  • Ganjefar, S., Ghassemi, A. A., Ahmadi, M. M., 2014, “Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network”, Energy, Vol. 67, pp. 444-453, doi:10.1016/j.energy.2014.02.023.
  • GWEC, Global Wind Energy Council, 2022, “Global Wind Report 2022”, Retrieved from https://gwec.net/wp-content/uploads/2022/03/GWEC-GLOBAL-WIND-REPORT-2022.pdf.
  • Hossain, M. M., Ali, M. H., 2015, “Future research directions for the wind turbine generator system”, Renewable and Sustainable Energy Reviews, Vol. 49, pp. 481-489, doi:10.1016/j.rser.2015.04.126.
  • Hussain, J., Mishra, M. K., 2016, “Adaptive maximum power point tracking control algorithm for wind energy conversion systems”, IEEE Transactions on Energy Conversion, Vol. 31, No. 2, pp. 697-705, doi: 10.1109/TEC.2016.2520460.
  • Kumar, D., Chatterjee, K., 2016, “A review of conventional and advanced MPPT algorithms for wind energy systems”, Renewable and Sustainable Energy Reviews, Vol. 55, pp. 957-970, doi: 10.1016/j.rser.2015.11.013.
  • Kumar, M. B. H., Saravanan, B., Sanjeevikumar, P., Blaabjerg, F., 2018, “Review on control techniques and methodologies for maximum power extraction from wind energy systems”, IET Renewable Power Generation, Vol. 12, No. 14, pp. 1609-1622, doi:10.1049/iet-rpg.2018.5206.
  • Lee, J., Kim, Y., 2016, “Sensorless fuzzy-logic-based maximum power point tracking control for a small-scale wind power generation systems with a switched-mode rectifier”, IET Renewable Power Generation, Vol. 10, No. 2, pp. 194-202, doi:10.1049/iet-rpg.2015.0250.
  • Melício, R., Mendes, V. M. F., Catalão, J. P. S., 2010, “Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation”, Renewable Energy, Vol. 35, No. 10, pp. 2165-2174, doi:10.1016/j.renene.2010.03.009.
  • Mousa, H. H., Youssef, A.-R., Mohamed, E. E., 2021, “State of the art perturb and observe MPPT algorithms based wind energy conversion systems: A technology review”, International Journal of Electrical Power & Energy Systems, Vol. 126, pp.1-25, doi: 10.1016/j.ijepes.2020.106598.
  • Nasiri, M., Milimonfared, J., Fathi, S., 2014, “Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines”, Energy Conversion and Management, Vol. 86, pp. 892-900, doi: 10.1016/j.enconman.2014.06.055.
  • Pao, L. Y., Johnson, K. E., 2011, “Control of wind turbines”, IEEE Control systems magazine, Vol. 31, No. (2), pp. 44-62, doi: 10.1109/MCS.2010.939962.
  • Pranupa S., Sriram A. T., Rao, S. N., 2022, “Wind energy conversion system using perturb & observe-based maximum power point approach interfaced with T-type three-level inverter connected to grid”, Clean Energy, Vol. 6, No. 4, pp. 534-549, doi:10.1093/ce/zkac034.
  • Singh, U., Rizwan, M., Malik, H., García Márquez, F. P., 2022, “Wind energy scenario, success and initiatives towards renewable energy in India—A review”, Energies, Vol. 15, No. 6, pp. 1-39, doi: 10.3390/en15062291.
  • Vijayakumar, K., Kumaresan, N., Ammasaigounden, N., 2015, “Speed sensor‐less maximum power point tracking and constant output power operation of wind‐driven wound rotor induction generators”, IET Power Electronics, Vol. 8, No. 1, pp. 33-46, doi: 10.1049/iet-pel.2013.0700.
  • Yaakoubi, A. E., Amhaimar, L., Attari, K., Harrak, M. H., Halaoui, M. E., Asselman, A., 2019, “Non-linear and intelligent maximum power point tracking strategies for small size wind turbines: Performance analysis and comparison”, Energy Reports, Vol. 5, pp. 545-554, doi: 10.1016/j.egyr.2019.03.001.
  • Yang, B., Jiang, L., Wang, L., Yao, W., Wu, Q. H., 2016, “Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine”, International Journal of Electrical Power & Energy Systems, Vol. 74, pp. 429-436, doi: 10.1016/j.ijepes.2015.07.036.
  • Yaramasu, V., Wu, B., Sen, P. C., Kouro, S., Narimani, M., 2015, “High-power wind energy conversion systems: State-of-the-art and emerging technologies” Proceedings of the IEEE, Vol. 103, No. 5, pp. 740-788, May 2015, doi:10.1109/JPROC.2014.2378692.
  • Yin, X., Jiang, Z., Pan, L., 2020, “Recurrent neural network based adaptive integral sliding mode power maximization control for wind power systems”, Renewable Energy, Vol. 145, pp. 1149-1157, doi: 10.1016/j.renene.2018.12.098.
  • Youssef, A.-R., Ali, A. I. M., Saeed, M. S. R., Mohamed, E. E. M., 2019, “Advanced multi-sector P&O maximum power point tracking technique for wind energy conversion system”, International Journal of Electrical Power & Energy Systems, Vol. 107, pp. 89-97, doi: 10.1016/j.ijepes.2018.10.034.

Şebeke-Bağlantısız Rüzgar Enerjisi Dönüşüm Sisteminden Maksimum Elektriksel Güç Eldesinde Performans Katsayılarının Analizi

Year 2022, Volume: 10 Issue: 4, 1048 - 1060, 03.12.2022
https://doi.org/10.36306/konjes.1168457

Abstract

Rüzgar Enerjisi Dönüşüm Sistemleri (WECS)’nden maksimum güç yakalanmasında performansın artırılması ve enerji verimliliğinin iyileştirilmesi oldukça önemli bir araştırma konusudur. Günümüzde büyük-ölçekli WECS’lerde Maksimum Güç Noktası Takibi (MPPT) birimi kullanılarak rüzgar türbininden maksimum mekanik gücün elde edilmesi yaygın olarak amaçlanmaktadır. Benzerce küçük-ölçekli WECS uygulamalarında da maksimum mekanik güce ulaşmak amaçlanabilir. Ancak WECS’de yer alan yapısal alt sistemler ve elektriksel alt birimlerde kayıplar meydana gelir. Bu kayıplardan dolayı tüm sistemin verimi düşer ve sistemin karakteristiği de ayrıca etkilenir. En güncel fikirlerden biri olan maksimum elektriksel çıkış gücünün yakalanması ile de bu sistemlerin çalışması gerçekleştirilebilmektedir. Böylece, rüzgar türbininden ziyade WECS’in tamamı optimal olarak kontrol edilebilir. Nihai olarak da Maksimum Elektriksel Güç Takibi (MEPT)’li tasarımlar MPPT’li tasarımlarından daha yüksek verimlilik ile daha yüksek gücün elde edilmesini sağlayabilmektedir. Bu çalışmada, şebeke bağlantısız Kalıcı Mıknatıslı Senkron Generatör (PMSG) temelli WECS için MPPT’li ve MEPT’li sistem çalışma konseptleri düşünülerek, sistem verimliliği açısından belirli odak noktalarındaki performans katsayılarının değişimleri değerlendirilmektedir. Ayrıca 8m/s ve 12m/s arasında her bir belirli rüzgar hızı için de teknik ve teorik olarak karşılaştırmalı analizler yapılmaktadır.

References

  • Barakati, S. M., Kazerani, M., Aplevich, J. D., 2009, “Maximum Power Tracking Control for a Wind Turbine System Including a Matrix Converter”, IEEE Transactions on Energy Conversion, Vol. 24, No. 3, pp. 705-713, doi:10.1109/TEC.2008.2005316.
  • Cheng, M., Zhu, Y., 2014, “The state of the art of wind energy conversion systems and technologies: A review”, Energy Conversion and Management, Vol. 88, pp. 332-347, doi: 10.1016/j.enconman.2014.08.037.
  • Chinmaya, K., Singh, G. K., 2018, ”Performance evaluation of multiphase induction generator in stand‐alone and grid‐connected wind energy conversion system”, IET Renewable Power Generation, Vol. 12, No. 7, pp. 823-831, doi: 10.1049/iet-rpg.2017.0791.
  • Dursun, E. H., Koyuncu, H., Kulaksiz, A. A., 2020, “A novel unified maximum power extraction framework for PMSG based WECS using chaotic particle swarm optimization derivatives”, Engineering Science and Technology, an International Journal, Vol. 24, No. 1, pp. 158-170, doi:10.1016/j.jestch.2020.05.005.
  • Dursun, E. H., Kulaksiz, A. A., 2020a, “MPPT control of PMSG based small-scale wind energy conversion system connected to DC-bus”, International Journal of Emerging Electric Power Systems, Vol. 21, No. 2, pp. 1-13, doi: 10.1515/ijeeps-2019-0188.
  • Dursun, E. H., Kulaksiz, A. A., 2020b, “Second-order sliding mode voltage-regulator for improving MPPT efficiency of PMSG-based WECS”, International Journal of Electrical Power & Energy Systems, Vol. 121, pp. 1-9, doi:10.1016/j.ijepes.2020.106149.
  • Fathabadi, H., 2017, “Novel Maximum Electrical and Mechanical Power Tracking Controllers for Wind Energy Conversion Systems”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol .5, No. 4, pp. 1739-1745, doi:10.1109/JESTPE.2017.2727978.
  • Ganjefar, S., Ghassemi, A. A., Ahmadi, M. M., 2014, “Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network”, Energy, Vol. 67, pp. 444-453, doi:10.1016/j.energy.2014.02.023.
  • GWEC, Global Wind Energy Council, 2022, “Global Wind Report 2022”, Retrieved from https://gwec.net/wp-content/uploads/2022/03/GWEC-GLOBAL-WIND-REPORT-2022.pdf.
  • Hossain, M. M., Ali, M. H., 2015, “Future research directions for the wind turbine generator system”, Renewable and Sustainable Energy Reviews, Vol. 49, pp. 481-489, doi:10.1016/j.rser.2015.04.126.
  • Hussain, J., Mishra, M. K., 2016, “Adaptive maximum power point tracking control algorithm for wind energy conversion systems”, IEEE Transactions on Energy Conversion, Vol. 31, No. 2, pp. 697-705, doi: 10.1109/TEC.2016.2520460.
  • Kumar, D., Chatterjee, K., 2016, “A review of conventional and advanced MPPT algorithms for wind energy systems”, Renewable and Sustainable Energy Reviews, Vol. 55, pp. 957-970, doi: 10.1016/j.rser.2015.11.013.
  • Kumar, M. B. H., Saravanan, B., Sanjeevikumar, P., Blaabjerg, F., 2018, “Review on control techniques and methodologies for maximum power extraction from wind energy systems”, IET Renewable Power Generation, Vol. 12, No. 14, pp. 1609-1622, doi:10.1049/iet-rpg.2018.5206.
  • Lee, J., Kim, Y., 2016, “Sensorless fuzzy-logic-based maximum power point tracking control for a small-scale wind power generation systems with a switched-mode rectifier”, IET Renewable Power Generation, Vol. 10, No. 2, pp. 194-202, doi:10.1049/iet-rpg.2015.0250.
  • Melício, R., Mendes, V. M. F., Catalão, J. P. S., 2010, “Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation”, Renewable Energy, Vol. 35, No. 10, pp. 2165-2174, doi:10.1016/j.renene.2010.03.009.
  • Mousa, H. H., Youssef, A.-R., Mohamed, E. E., 2021, “State of the art perturb and observe MPPT algorithms based wind energy conversion systems: A technology review”, International Journal of Electrical Power & Energy Systems, Vol. 126, pp.1-25, doi: 10.1016/j.ijepes.2020.106598.
  • Nasiri, M., Milimonfared, J., Fathi, S., 2014, “Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines”, Energy Conversion and Management, Vol. 86, pp. 892-900, doi: 10.1016/j.enconman.2014.06.055.
  • Pao, L. Y., Johnson, K. E., 2011, “Control of wind turbines”, IEEE Control systems magazine, Vol. 31, No. (2), pp. 44-62, doi: 10.1109/MCS.2010.939962.
  • Pranupa S., Sriram A. T., Rao, S. N., 2022, “Wind energy conversion system using perturb & observe-based maximum power point approach interfaced with T-type three-level inverter connected to grid”, Clean Energy, Vol. 6, No. 4, pp. 534-549, doi:10.1093/ce/zkac034.
  • Singh, U., Rizwan, M., Malik, H., García Márquez, F. P., 2022, “Wind energy scenario, success and initiatives towards renewable energy in India—A review”, Energies, Vol. 15, No. 6, pp. 1-39, doi: 10.3390/en15062291.
  • Vijayakumar, K., Kumaresan, N., Ammasaigounden, N., 2015, “Speed sensor‐less maximum power point tracking and constant output power operation of wind‐driven wound rotor induction generators”, IET Power Electronics, Vol. 8, No. 1, pp. 33-46, doi: 10.1049/iet-pel.2013.0700.
  • Yaakoubi, A. E., Amhaimar, L., Attari, K., Harrak, M. H., Halaoui, M. E., Asselman, A., 2019, “Non-linear and intelligent maximum power point tracking strategies for small size wind turbines: Performance analysis and comparison”, Energy Reports, Vol. 5, pp. 545-554, doi: 10.1016/j.egyr.2019.03.001.
  • Yang, B., Jiang, L., Wang, L., Yao, W., Wu, Q. H., 2016, “Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine”, International Journal of Electrical Power & Energy Systems, Vol. 74, pp. 429-436, doi: 10.1016/j.ijepes.2015.07.036.
  • Yaramasu, V., Wu, B., Sen, P. C., Kouro, S., Narimani, M., 2015, “High-power wind energy conversion systems: State-of-the-art and emerging technologies” Proceedings of the IEEE, Vol. 103, No. 5, pp. 740-788, May 2015, doi:10.1109/JPROC.2014.2378692.
  • Yin, X., Jiang, Z., Pan, L., 2020, “Recurrent neural network based adaptive integral sliding mode power maximization control for wind power systems”, Renewable Energy, Vol. 145, pp. 1149-1157, doi: 10.1016/j.renene.2018.12.098.
  • Youssef, A.-R., Ali, A. I. M., Saeed, M. S. R., Mohamed, E. E. M., 2019, “Advanced multi-sector P&O maximum power point tracking technique for wind energy conversion system”, International Journal of Electrical Power & Energy Systems, Vol. 107, pp. 89-97, doi: 10.1016/j.ijepes.2018.10.034.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Emre Hasan Dursun 0000-0001-9286-0195

Publication Date December 3, 2022
Submission Date August 30, 2022
Acceptance Date October 19, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

IEEE E. H. Dursun, “ANALYSIS OF PERFORMANCE COEFFICIENTS IN MAXIMUM ELECTRICAL POWER EXTRACTION FROM STAND-ALONE WIND ENERGY CONVERSION SYSTEM”, KONJES, vol. 10, no. 4, pp. 1048–1060, 2022, doi: 10.36306/konjes.1168457.