Review
BibTex RIS Cite

AKILLI MALZEME OLARAK POLİMERLER VE UYGULAMALARI

Year 2023, Volume: 11 Issue: 1, 274 - 299, 01.03.2023
https://doi.org/10.36306/konjes.1106955

Abstract

Gelişmekte olan malzemeler içerisinde yer alan akıllı malzemeler günümüzde oldukça dikkat çeken ve çok farklı uygulamalarda kullanım alanı bulan en önemli mühendislik malzemelerinden biridir. Bu çalışma ile akıllı polimerlerin mevcut kullanım alanlarına ek olarak gelecekteki potansiyel uygulamalarının belirlenmesi, akıllı polimer teknolojilerindeki güncel gelişmelerin izlenmesi, akıllı polimerler konusunda temel bir sınıflandırmanın oluşturulması, literatürün derlenmesi, konu hakkında çalışanlar ve konuya ilgi duyanların başvuracağı Türkçe bir kaynak oluşturulması amaçlanmaktadır. Bu çalışmada; akıllı polimer teknolojilerindeki son gelişmeler mevcut çalışmalar doğrultusunda incelenecek, polimerlerin akıllı malzeme olarak kullanımının avantajları, dezavantajları, akıllı polimer teknolojilerindeki son gelişmelerin ışığı altında değerlendirilecektir. Çalışmada akıllı polimerler, (i)akıllı polimerik jeller, (ii)şekil hafızalı polimerler, (iii)kendi kendini onaran/iyileştiren polimerler ve (iv) iletken polimerler şeklinde dört başlıkta sınıflandırılarak incelenmiştir

References

  • [1] M. R. Aguilar, J. S. Román, J. Eds., Smart polymers and their applications (Second edition). Woodhead Publishing is an imprint of Elsevier, 2019.
  • [2] Z. Tüylek, (2019). “Sağlık alanında kullanılan akıllı polimerler,” İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, vol. 7, no. 1, pp. 81-95, 2019.
  • [3] S. Bahl, H. Nagar, I. Singh, S. Sehgal, “Smart materials types, properties and applications: A review,” Materials Today: Proceedings, vol. 28, pp. 1302-1306, 2020.
  • [4] M.R. Aguilar, C. Elvira, A., Gallardo, B. Vázquez, J. S. Román, "Smart Polymers and Their Applications as Biomaterials," Smart Polymers, vol. 3, p. 27, 2007.
  • [5] H. Meng, G. Li, "A review of stimuli-responsive shape memory polymer composites," Polymer, vol. 54, no. 9, pp. 2199-2221, 2013.
  • [6] J. Zhuang, M. R. Gordon, J. Ventura, L. Li, S. Thayumanavan, "Multi-stimuli responsive macromolecules and their assemblies," Chemical Society Reviews, vol. 42, no. 17, 7421, 2013.
  • [7] K. Peng, I. Tomatsu, A. Kros, "Hydrogel-based drug carriers for controlled release of hydrophobic drugs and proteins," Journal of Controlled Release, vol. 152, pp. e72-e74, 2011.
  • [8] T. Pretsch, "Review on the Functional Determinants and Durability of Shape Memory Polymers," Polymers, vol. 2, no. 3, pp. 120-158, 2010.
  • [9] M. Guardia, F. A., Esteve-Turrillas. Eds., Handbook of smart materials in analytical chemistry, Volume I. Wiley, 2019.
  • [10] İ. Karagöz, Ö. Tuna, "Effect of melt temperature on product properties of injection-molded high-density polyethylene," Polymer Bulletin, vol. 78, pp. 6073–6091, 2021.
  • [11] Q. Xu, Y. Liu, S. Su, W. Li, C. Chen, Y. Wu, "Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles," Biomaterials, vol. 33, no. 5, pp. 1627-1639, 2012.
  • [12] D.T. Simon, E. O. Gabrielsson, K. Tybrandt, M. Berggren, "Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology," Chemical Reviews, vol. 116, no. 21, pp. 13009-13041, 2016.
  • [13] K. Peng, I. Tomatsu, A. Kros, "Hydrogel-based drug carriers for controlled release of hydrophobic drugs and proteins," Journal of Controlled Release, vol. 152, pp. e72-e74, 2011.
  • [14] M. Burnworth, L. Tang, J. R. Kumpfer, A.J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, "Optically healable supramolecular polymers," Nature, vol. 472, no. 7343, pp. 334-337, 2011.
  • [15] M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, "Redox-responsive self-healing materials formed from host–guest polymers," Nature Communications, vol. 2, no. 1, p. 511, 2011.
  • [16] M.W. Urban, D. Davydovich, Y. Yang, T. Demir, Y. Zhang, L. Casabianca, "Key-and-lock commodity self-healing copolymers," Science, vol. 362, no. 6411, pp. 220-225, 2018.
  • [17] P. A. O’Connell, G. B. McKenna, "Rheological Measurements of the Thermoviscoelastic Response of Ultrathin Polymer Films," Science, vol. 307, no. 5716, pp. 1760-1763, 2005.
  • [18] A. A. Tsyganenko, K. S. Smirnov, "Vibrational spectroscopy of molecules and macromolecules on surfaces," Vibrational Spectroscopy, vol. 9, no. 3, pp. 308-309, 1995.
  • [19] S. Kamila. "Introduction, classification and applications of smart materials: an overview," American Journal of Applied Sciences, vol. 10, no. 8, pp. 876-880, 2013.
  • [20] B. Aïssa, D. Therriault, E. Haddad, W. Jamroz, "Self-Healing Materials Systems: Overview of Major Approaches and Recent Developed Technologies," Advances in Materials Science and Engineering, vol. 2012, pp. 1-17, 2012.
  • [21] K, Namsheer., C. S. Rout, "Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications," RSC Advances, vol. 11, no. 10, pp. 5659-5697, 2021.
  • [22] Y. Li, D. Lu, C. P. Wong, "Intrinsically Conducting Polymers (ICPs)," in Electrical Conductive Adhesives with Nanotechnologies, Y. Li, D. Lu, C. P. Wong, Eds. Boston, MA: Springer, 2010. pp-361-424.
  • [23] M. Kök, İ. N. Qader, F. Dağdelen, Y. Aydoğdu, "Akıllı Malzemeler üzerine derleme: Araştırmalar ve uygulamaları," El-Cezeri Fen ve Mühendislik Dergisi, vol. 6, no. 3, pp. 755-788, 2019.
  • [24] Y. Li, D. Lu, C. P. Wong, Eds., Intrinsically Conducting Polymers (ICPs). Boston, MA: Springer, 2010.
  • [25] A. Ryan, "Azoreductases in drug metabolism: Azoreductases in drug metabolism," British Journal of Pharmacology, vol. 174, no. 14, pp. 2161-2173, 2017.
  • [26] O. Soga, C. F. van Nostrum, W. E. Hennink, "Poly(N -(2-hydroxypropyl) Methacrylamide Mono/Di Lactate): A New Class of Biodegradable Polymers with Tuneable Thermosensitivity," Biomacromolecules, vol. 5, no.3, pp. 818-821, 2004.
  • [27] E. M. Ahmed, "Hydrogel: Preparation, characterization, and applications: A review," Journal of Advanced Research, vol. 6, no. 2, pp. 105-121, 2015.
  • [28] A. Kumar, A. Srivastava, I. Y. Galaev, B. Mattiasson, "Smart polymers: Physical forms and bioengineering applications," Progress in Polymer Science, vol. 32, no. 10, pp. 1205-1237, 2007.
  • [29] Q. Zhao, H. J. Qi, T. Xie, "Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding," Progress in Polymer Science, vol. 49-50, pp. 79-120, 2015.
  • [30] J. L. Drury, D. J. Mooney, "Hydrogels for tissue engineering: Scaffold design variables and applications," Biomaterials, vol. 24, no. 24, pp. 4337-4351, 2003.
  • [31] B. G. Chung, K. H. Lee, A. Khademhosseini, S. H. Lee, "Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering," Lab Chip, vol. 12, no. 1, pp. 45-59, 2012.
  • [32] Y. Qiu, K. Park, "Environment-sensitive hydrogels for drug delivery," Advanced Drug Delivery Reviews, vol. 53, no. 3, pp. 321-339, 2001.
  • [33] M. Nakayama, T. Okano, T. Miyazaki, F. Kohori, K. Sakai, M. Yokoyama, "Molecular design of biodegradable polymeric micelles for temperature-responsive drug release," Journal of Controlled Release, vol. 115, no. 1, pp. 46-56, 2006.
  • [34] H. L. Lim, Y. Hwang, M. Kar, S. Varghese, "Smart hydrogels as functional biomimetic systems," Biomater. Sci., vol. 2, no. 5, pp. 603-618, 2014.
  • [35] X. Zhang, D. Wu, C. C. Chu, "Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex–MA/PNIPAAm hydrogels," Biomaterials, vol. 25, no. 19, pp. 4719-4730, 2004.
  • [36] P. Gupta, K. Vermani, S. Garg, "Hydrogels: From controlled release to pH-responsive drug delivery," Drug Discovery Today, vol. 7, no. 10, pp. 569-579, 2002.
  • [37] S. Krause, F. Zander, G. Bergmann, H. Brandt, H. Wertmer, H. Finkelmann, "Nematic main-chain elastomers: Coupling and orientational behavior," Comptes Rendus Chimie, vol. 12, no. 1-2, pp. 85-104, 2009.
  • [38] J. Scheinpflug, M. Pfeiffenberger, A. Damerau, F. Schwarz, M. Textor, A. Lang, F. Schulze, "Journey into Bone Models: A Review," Genes, vol. 9, no. 5, p. 247, 2018.
  • [39] M. Gümüşderelioğlu, "Yumuşak ve Akıllı Polimerler," Bilim ve Teknik Dergisi, pp. 44-49, 2010.
  • [40] M. Heskins, J. E. Guillet, "Solution Properties of Poly(N-isopropylacrylamide)," Journal of Macromolecular Science: Part A - Chemistry, vol. 2, no. 8, pp. 1441-1455, 1968.
  • [41] D.A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough, S. L. Potisek, M. T. Ong, P.V. Braun, T. J. Martínez, S. R. White, J. S. Moore, N. R. Sottos, "Force-induced activation of covalent bonds in mechanoresponsive polymeric materials," Nature, vol. 459, no. 7243, pp. 68-72, 2009.
  • [42] M. Irie, "Properties and applications of photoresponsive polymers," Pure and Applied Chemistry, vol. 62, no. 8, pp. 1495-1502, 1990.
  • [43] S. Dai, P. Ravi, K. C. Tam, "pH-Responsive polymers: Synthesis, properties and applications," Soft Matter, vol. 4, no. 3, p. 435, 2008.
  • [44] L. Jingcheng, V. S. Reddy, W. A. D. M. Jayathilaka, A. Chinnappan, S. Ramakrishna, R. Ghosh, "Intelligent Polymers, Fibers and Applications," Polymers, vol. 13, no. 9, p. 1427, 2021.
  • [45] M. Wei, Y. Gao, X. Li, M. J. Serpe, "Stimuli-responsive polymers and their applications," Polymer Chemistry, vol. 8, no. 1, pp. 127-143, 2017.
  • [46] A. K. Bajpai, S. K. Shukla, S. Bhanu, S. Kankane, "Responsive polymers in controlled drug delivery," Progress in Polymer Science, vol. 33, no. 11, pp. 1088-1118, 2008.
  • [47] D. Parasuraman, M. J. Serpe, "Poly(N -Isopropylacrylamide) Microgels for Organic Dye Removal from Water," ACS Applied Materials & Interfaces, vol. 3, no. 7, pp. 2732-2737, 2011.
  • [48] M. Ma, L. Guo, D. G. Anderson, R. Langer, "Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients," Science, vol. 339, no. 6116, pp. 186-189, 2013.
  • [49] L. A. Connal, Q. Li, J. F. Quinn, E. Tjipto, F. Caruso, G. G. Qiao, "pH-Responsive Poly(acrylic acid) Core Cross-Linked Star Polymers: Morphology Transitions in Solution and Multilayer Thin Films," Macromolecules, vol. 41, no. 7, pp. 2620-2626, 2008.
  • 50] J. Kim, M. J. Serpe, L. A. Lyon, "Hydrogel Microparticles as Dynamically Tunable Microlenses," Journal of the American Chemical Society, vol. 126, no. 31, pp. 9512-9513, 2004.
  • [51] F. Liu,M. W. Urban, "Dual Temperature and pH Responsiveness of Poly(2-( N , N -dimethylamino)ethyl methacrylate- co—N -butyl acrylate) Colloidal Dispersions and Their Films," Macromolecules, vol. 41, no. 17, pp. 6531-6539, 2008.
  • [52] Q. Zhang, L. Lei, S. Zhu, Gas-Responsive Polymers," ACS Macro Letters, vol. 6, no. 5, pp. 515-522, 2017.
  • [53] J. F. Gohy, Y. Zhao, "Photo-responsive block copolymer micelles: Design and behavior," Chemical Society Reviews, vol. 42, no. 17, p. 7117, 2013.
  • [54] F. D. Jochum, P. Theato, "Temperature- and light-responsive smart polymer materials," Chem. Soc. Rev., vol. 42, no.17, pp. 7468-7483, 2013.
  • [55] P. D. Thornton, R. J. Mart, R. V. Ulijn, "Enzyme-Responsive Polymer Hydrogel Particles for Controlled Release," Advanced Materials, vol. 19, no. 9, pp. 1252-1256, 2007.
  • [56] R. V. Ulijn, "Enzyme-responsive materials: A new class of smart biomaterials," Journal of Materials Chemistry, vol. 16, no. 23, p. 2217, 2006.
  • [57] T. Miyata, N. Asami, T. Uragami, "A reversibly antigen-responsive hydrogel," Nature, vol. 399, no. 6738, pp. 766-769, 1999.
  • [58] Y. Zhao, "Light-Responsive Block Copolymer Micelles," Macromolecules, vol. 45, no. 9, pp. 3647-3657, 2012.
  • [59] G. Charlet, G. Delmas, "Thermodynamic properties of polyolefin solutions at high temperature: 1. Lower critical solubility temperatures of polyethylene, polypropylene and ethylene-propylene copolymers in hydrocarbon solvents," Polymer, vol. 22, no. 9, pp. 1181-1189, 1981.
  • [60] H. Feil, Y. H. Bae, J. Feijen, S. W. Kim, "Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers," Macromolecules, vol. 26, no. 10, pp. 2496-2500, 1993.
  • [61] H. G. Schild, "Poly(N-isopropylacrylamide): Experiment, theory and application," Progress in Polymer Science, vol. 17, no. 2, pp. 163-249, 1992.
  • [62] P. Kujawa, F. M. Winnik, "Volumetric Studies of Aqueous Polymer Solutions Using Pressure Perturbation Calorimetry: A New Look at the Temperature-Induced Phase Transition of Poly(N -isopropylacrylamide) in Water and D2O," Macromolecules, vol. 34, no. 12, pp. 4130-4135, 2001.
  • [63] D. Crespy, R. M. Rossi, "Temperature-responsive polymers with LCST in the physiological range and their applications in textiles," Polymer International, vol. 56, no. 12, pp. 1461-1468, 2007.
  • [64] R. Liu, M. Fraylich, B. R. Saunders, Thermoresponsive copolymers: From fundamental studies to applications," Colloid and Polymer Science, vol. 287, no. 6, pp. 627-643, 2009.
  • [65] M. Cao, Y. Wang, X. Hu, H. Gong, R. Li, H. Cox, J. Zhang, T. A. Waigh, H. Xu, J. R. Lu, "Reversible Thermoresponsive Peptide–PNIPAM Hydrogels for Controlled Drug Delivery," Biomacromolecules, vol. 20, no. 9, pp. 3601-3610, 2019.
  • [66] S. C. Song, S. B. Lee, J. I. Jin, Y. S. Sohn, "A New Class of Biodegradable Thermosensitive Polymers. I. Synthesis and Characterization of Poly(organophosphazenes) with Methoxy-Poly(ethylene glycol) and Amino Acid Esters as Side Groups," Macromolecules, vol. 32, no. 7, pp. 2188-2193, 1999.
  • [67] R. S. Riaz, M. Elsherif, R. Moreddu, I. Rashid, M. U. Hassan, A. K. Yetisen, H. Butt, "Anthocyanin-Functionalized Contact Lens Sensors for Ocular pH Monitoring," ACS Omega, vol. 4, no. 26, pp. 21792-21798, 2019.
  • [68] Y. Zhao, M. Lei, S. X. Liu, Q. Zhao, "Smart hydrogel-based optical fiber SPR sensor for pH measurements," Sensors and Actuators B: Chemical, vol. 261, pp. 226-232, 2018.
  • 69] N. Jiang, R. Ahmed, A. A. Rifat, J. Guo, Y. Yin, Y. Montelongo, H. Butt, A. K. Yetisen, "Functionalized Flexible Soft Polymer Optical Fibers for Laser Photomedicine," Advanced Optical Materials, vol. 6, no. 3, p. 1701118, 2018.
  • [70] A. K. Yetisen, N. Jiang, A. Fallahi, Y. Montelongo, G. U. Ruiz‐Esparza, A. Tamayol, Y. S. Zhang, I. Mahmood, S. Yang, K. S. Kim, H. Butt, A. Khademhosseini, S. Yun, "Glucose‐Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid," Advanced Materials, vol. 29, no. 15, p. 1606380, 2017.
  • [71] B. Mirani, E. Pagan, B. Currie, M. A. Siddiqui, R. Hosseinzadeh, P. Mostofalu, Y. S. Zhang, A. Ghahary, M. Akbari, "An Advanced Multifunctional Hydrogel-Based Dressing for Wound Monitoring and Drug Delivery," Advanced Healthcare Materials, vol. 6, no. 19, p. 1700718, 2017.
  • [72] T. Ikeda, J. Mamiya, Y. Yu, "Photomechanics of Liquid-Crystalline Elastomers and Other Polymers," Angewandte Chemie International Edition, vol. 46, no. 4, pp. 506-528, 2007.
  • [73] T. Chung, A. Romo-Uribe, P. T. Mather, "Two-Way Reversible Shape Memory in a Semicrystalline Network," Macromolecules, vol. 41, no. 1, pp. 184-192, 2008.
  • [74] J. Zotzmann, M. Behl, D. Hofmann, A. Lendlein, "Reversible Triple-Shape Effect of Polymer Networks Containing Polypentadecalactone- and Poly(ε-caprolactone)-Segments," Advanced Materials, vol. 22, no. 31, pp. 3424-3429, 2010.
  • [75] F. Kleinschmidt, M. Hickl, K. Saalwächter, C. Schmidt, H. Finkelmann, "Lamellar Liquid Single Crystal Hydrogels: Synthesis and Investigation of Anisotropic Water Diffusion and Swelling," Macromolecules, vol. 38, no. 23, pp. 9772-9782, 2005.
  • [76] S. A. Willis, G. R. Dennis, G. Zheng, W. S. Price, "Preparation and physical properties of a macroscopically aligned lyotropic hexagonal phase templated hydrogel," Reactive and Functional Polymers, vol. 73, no. 7, pp. 911-922, 2013.
  • [77] H. Xing, J. Li, Y. Shi, J. Guo, J. Wei, "Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer," ACS Applied Materials & Interfaces, vol. 8, no. 14, pp. 9440-9445, 2016.
  • [78] Z. Zhang, Z. Chen, Y. Wang, Y. Zhao, "Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins," Proceedings of the National Academy of Sciences, vol. 117, no. 31, pp. 18310-18316, 2020.
  • [79] G. H. Lee, S. H. Han, J. B. Kim, J. H. Kim, J. M. Lee, S. H. Kim, "Colloidal Photonic Inks for Mechanochromic Films and Patterns with Structural Colors of High Saturation," Chemistry of Materials, vol. 31, no. 19, pp. 8154-8162. 2019.
  • [80] H. Yi, S. Lee, H. Ko, D. Lee, W. Bae, T. Kim, D. S. Hwang, H. E. Jeong, "Ultra‐Adaptable and Wearable Photonic Skin Based on a Shape‐Memory, Responsive Cellulose Derivative," Advanced Functional Materials, vol. 29, no. 34, p. 1902720, 2019.
  • [81] A. Lendlein, S. Kelch, "Shape-Memory Polymers," Angewandte Chemie International Edition, vol. 41, no. 12, p. 2034, 2002.
  • [82] X. Wu, W. Huang, Y. Zhao, Z. Ding, C. Tang, J. Zhang, "Mechanisms of the Shape Memory Effect in Polymeric Materials," Polymers, vol. 5, no. 4, pp. 1169-1202, 2013.
  • [83] W. M. Huang, Y. Zhao, C. C. Wang, Z. Ding, H. Purnawali, C. Tang, J. L. Zhang, "Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization," Journal of Polymer Research, vol. 19, no. 9, p. 9952, 2012.
  • [84] S. Miyazaki, Y. Q. Fu, W. M. Huang, Eds., Thin Film Shape Memory Alloys: Fundamentals and Device Applications. Cambridge University Press, 2009.
  • [85] L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, C. Tang, "Stimulus-responsive shape memory materials: A review," Materials & Design, vol. 33, pp. 577-640, 2012.
  • [86] L. Peponi, M. P. Arrieta, A. Mujica-Garcia, D. López, "Smart Polymers", in Modification of Polymer Properties, C. F. Jasso-Gastinel, J. M. Kenny, Eds. New York: William Andrew Publishing, 2017, pp-131-154.
  • [87] M. Behl, M. Y. Razzaq, A. Lendlein, "Multifunctional Shape-Memory Polymers," Advanced Materials, vol. 22, no. 31, pp. 3388-3410, 2010.
  • [88] I. K. Kuder, A. F. Arrieta, W. E. Raither, P. Ermanni, "Variable stiffness material and structural concepts for morphing applications," Progress in Aerospace Sciences, vol. 63, pp. 33-55, 2013.
  • [89] C. Wischke, A. Lendlein, "Shape-Memory Polymers as Drug Carriers—A Multifunctional System," Pharmaceutical Research, vol. 27, no. 4, pp. 527-529, 2010.
  • [90] L. Zhang, H. Du, L. Liu, Y. Liu, J. Leng, "Analysis and design of smart mandrels using shape memory polymers," Composites Part B: Engineering, vol. 59, pp. 230-237, 2010.
  • [91] A. Lendlein, A. M. Schmidt, R. Langer, "AB-polymer networks based on oligo(ɛ-caprolactone) segments showing shape-memory properties," Proceedings of the National Academy of Sciences, vol. 98, no. 3, pp. 842-847, 2001.
  • [92] H. Fischer, "Self-repairing material systems―a dream or a reality," Natural Science, vol. 02, no. 08, pp. 873-901, 2010.
  • [93] S. J. García, H. R. Fischer, S. van der Zwaag, "A critical appraisal of the potential of self healing polymeric coatings," Progress in Organic Coatings, vol. 72, no. 3, pp. 211-221, 2011.
  • [94] C. Dry, "Procedures developed for self-repair of polymer matrix composite materials," Composite Structures, vol. 35, no. 3, pp. 263-269, 1996.
  • [95] N. Zhong, W. Post, "Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: A review," Composites Part A: Applied Science and Manufacturing, vol. 69, pp. 226-239, 2015.
  • [96] M. D. Hager, P. Greil, C. Leyens, S. van der Zwaag, U. S. Schubert, "Self-Healing Materials," Advanced Materials, vol. 22, no. 47, pp. 5424-5430, 2010.
  • [97] X. K. D. Hillewaere, F. E. Du Prez, "Fifteen chemistries for autonomous external self-healing polymers and composites," Progress in Polymer Science, vol. 49-50, pp. 121-153, 2015.
  • [98] N. K. Guimard, K. K. Oehlenschlaeger, J. Zhou, S. Hilf, F. G. Schmidt, C. B. Kowollik, "Current Trends in the Field of Self-Healing Materials," Macromolecular Chemistry and Physics, vol. 213, no. 2, pp. 131-143, 2012.
  • [99] T. Nesterova, K. D. Johansen, S. Kill, "Synthesis of durable microcapsules for self-healing anticorrosive coatings: A comparison of selected methods," Progress in Organic Coatings, vol. 70, pp. 342-352, 2011.
  • [100] M. den Brabander, H.R. Fischer, S.J. Garcia, "Self-Healing Polymeric Systems: Concepts and Applications", in Smart Polymers and their Applications, A. M. Rosa and S. R. Julio, Eds. Sawston: Woodhead Publishing, 2019, pp-379-409.
  • [101] S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, "Autonomic healing of polymer composites," Nature, vol. 409, no. 6822, pp. 794-797, 2001.
  • [102] E. N. Brown, N. R. Sottos, S. R. White, "Fracture testing of a self-healing polymer composite," Experimental Mechanics, vol. 42, pp. 372–379, 2002.
  • [103] E. N. Brown, N. R. Sottos, "Performance of embedded microspheres for self-healing polymer composites," Society for Experimental Mechanics IX International Congress on Experimental, 2000, pp. 563-566.
  • [104] D. Jung, "Performance and properties of embedded microspheres for self-repairing applications," M. S. thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • [105] İ. Karagöz, "Termoplastiklerin sürtünme karıştırma kaynak özellikleri" Ph.D. thesis, Fen Bilimleri Enstitüsü, Marmara Üniversitesi, Göztepe, İstanbul, 2014.
  • [106] H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, "Thermal conductivity of polymer-based composites: Fundamentals and applications," Progress in Polymer Science, vol. 59, pp. 41-85, 2016.
  • [107] H. Lu, Y. Yao, W. M. Huang, D. Hui, "Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites," Composites Part B: Engineering, vol. 67, pp. 290-295, 2014.
  • [108] C. S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou, A. Harvey, C. Backes, Z. Li, M. S. Ferreira, M. E. Möbius, R. J. Young, J. N. Coleman, "Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites," Science, vol. 354, no. 6317, pp. 1257-1260, 2016.
  • [109] S. Yu, J. Lee, T. H. Han, C. Park, Y. Kwon, S. M. Hong, C. M. Koo, "Copper Shell Networks in Polymer Composites for Efficient Thermal Conduction," Applied Materials & Interfaces, vol. 5, pp. 11618-11622, 2013.
  • [110] J. R. Reynolds, B. C. Thompson, T. A. Skotheim, Handbook of Conducting Polymers. Boca Raton: CRC Press, 2019.
  • [111] A. Puiggalí-Jou, L. J. del Valle, C. Alemán, "Drug delivery systems based on intrinsically conducting polymers," Journal of Controlled Release, vol. 309, pp. 244-264, 2019.
  • [112] R. Feiner, L. Engel, S. Fleischer, M. Malki, I. Gal, A. Shapira, Y. Shacham-Diamand, T. Dvir, "Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function," Nature Materials, vol. 15, no. 6, pp. 679-685, 2016.
  • [113] S. Taccola, F. Greco, E. Sinibaldi, A. Mondini, B. Mazzolai, V. Mattoli, "Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators," Advanced Materials, vol. 27, no. 10, pp. 1668-1675.
  • [114] S. Takamatsu, T. Lonjaret, D. Crisp, J. M. Badier, G. G. Malliaras, E. Ismailova, (2015). "Direct patterning of organic conductors on knitted textiles for long-term electrocardiography," Scientific Reports, vol. 5, no. 1, p. 15003, 2015.

Polymers as Smart Materials and Their Applications

Year 2023, Volume: 11 Issue: 1, 274 - 299, 01.03.2023
https://doi.org/10.36306/konjes.1106955

Abstract

Smart materials, which are among the developing materials, are one of the most important engineering materials that attract attention and find use in many different applications. In this study, it is aimed to determine the potential future applications of smart polymers in addition to the current use, to monitor the current developments, to create a basic classification, to compile the literature. Therefore, a Turkish resource is created for the researchers who work on the subject and are interested. In the present work, the latest developments in smart polymer technologies will be examined in line with current studies, their advantages, and disadvantages of using polymers as smart materials will be evaluated. Smart polymers are classified under four headings as (i) smart polymeric gels, (ii) shape memory polymers, (iii) self-healing polymers and (iv) conductive polymers.

References

  • [1] M. R. Aguilar, J. S. Román, J. Eds., Smart polymers and their applications (Second edition). Woodhead Publishing is an imprint of Elsevier, 2019.
  • [2] Z. Tüylek, (2019). “Sağlık alanında kullanılan akıllı polimerler,” İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, vol. 7, no. 1, pp. 81-95, 2019.
  • [3] S. Bahl, H. Nagar, I. Singh, S. Sehgal, “Smart materials types, properties and applications: A review,” Materials Today: Proceedings, vol. 28, pp. 1302-1306, 2020.
  • [4] M.R. Aguilar, C. Elvira, A., Gallardo, B. Vázquez, J. S. Román, "Smart Polymers and Their Applications as Biomaterials," Smart Polymers, vol. 3, p. 27, 2007.
  • [5] H. Meng, G. Li, "A review of stimuli-responsive shape memory polymer composites," Polymer, vol. 54, no. 9, pp. 2199-2221, 2013.
  • [6] J. Zhuang, M. R. Gordon, J. Ventura, L. Li, S. Thayumanavan, "Multi-stimuli responsive macromolecules and their assemblies," Chemical Society Reviews, vol. 42, no. 17, 7421, 2013.
  • [7] K. Peng, I. Tomatsu, A. Kros, "Hydrogel-based drug carriers for controlled release of hydrophobic drugs and proteins," Journal of Controlled Release, vol. 152, pp. e72-e74, 2011.
  • [8] T. Pretsch, "Review on the Functional Determinants and Durability of Shape Memory Polymers," Polymers, vol. 2, no. 3, pp. 120-158, 2010.
  • [9] M. Guardia, F. A., Esteve-Turrillas. Eds., Handbook of smart materials in analytical chemistry, Volume I. Wiley, 2019.
  • [10] İ. Karagöz, Ö. Tuna, "Effect of melt temperature on product properties of injection-molded high-density polyethylene," Polymer Bulletin, vol. 78, pp. 6073–6091, 2021.
  • [11] Q. Xu, Y. Liu, S. Su, W. Li, C. Chen, Y. Wu, "Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles," Biomaterials, vol. 33, no. 5, pp. 1627-1639, 2012.
  • [12] D.T. Simon, E. O. Gabrielsson, K. Tybrandt, M. Berggren, "Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology," Chemical Reviews, vol. 116, no. 21, pp. 13009-13041, 2016.
  • [13] K. Peng, I. Tomatsu, A. Kros, "Hydrogel-based drug carriers for controlled release of hydrophobic drugs and proteins," Journal of Controlled Release, vol. 152, pp. e72-e74, 2011.
  • [14] M. Burnworth, L. Tang, J. R. Kumpfer, A.J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, "Optically healable supramolecular polymers," Nature, vol. 472, no. 7343, pp. 334-337, 2011.
  • [15] M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, "Redox-responsive self-healing materials formed from host–guest polymers," Nature Communications, vol. 2, no. 1, p. 511, 2011.
  • [16] M.W. Urban, D. Davydovich, Y. Yang, T. Demir, Y. Zhang, L. Casabianca, "Key-and-lock commodity self-healing copolymers," Science, vol. 362, no. 6411, pp. 220-225, 2018.
  • [17] P. A. O’Connell, G. B. McKenna, "Rheological Measurements of the Thermoviscoelastic Response of Ultrathin Polymer Films," Science, vol. 307, no. 5716, pp. 1760-1763, 2005.
  • [18] A. A. Tsyganenko, K. S. Smirnov, "Vibrational spectroscopy of molecules and macromolecules on surfaces," Vibrational Spectroscopy, vol. 9, no. 3, pp. 308-309, 1995.
  • [19] S. Kamila. "Introduction, classification and applications of smart materials: an overview," American Journal of Applied Sciences, vol. 10, no. 8, pp. 876-880, 2013.
  • [20] B. Aïssa, D. Therriault, E. Haddad, W. Jamroz, "Self-Healing Materials Systems: Overview of Major Approaches and Recent Developed Technologies," Advances in Materials Science and Engineering, vol. 2012, pp. 1-17, 2012.
  • [21] K, Namsheer., C. S. Rout, "Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications," RSC Advances, vol. 11, no. 10, pp. 5659-5697, 2021.
  • [22] Y. Li, D. Lu, C. P. Wong, "Intrinsically Conducting Polymers (ICPs)," in Electrical Conductive Adhesives with Nanotechnologies, Y. Li, D. Lu, C. P. Wong, Eds. Boston, MA: Springer, 2010. pp-361-424.
  • [23] M. Kök, İ. N. Qader, F. Dağdelen, Y. Aydoğdu, "Akıllı Malzemeler üzerine derleme: Araştırmalar ve uygulamaları," El-Cezeri Fen ve Mühendislik Dergisi, vol. 6, no. 3, pp. 755-788, 2019.
  • [24] Y. Li, D. Lu, C. P. Wong, Eds., Intrinsically Conducting Polymers (ICPs). Boston, MA: Springer, 2010.
  • [25] A. Ryan, "Azoreductases in drug metabolism: Azoreductases in drug metabolism," British Journal of Pharmacology, vol. 174, no. 14, pp. 2161-2173, 2017.
  • [26] O. Soga, C. F. van Nostrum, W. E. Hennink, "Poly(N -(2-hydroxypropyl) Methacrylamide Mono/Di Lactate): A New Class of Biodegradable Polymers with Tuneable Thermosensitivity," Biomacromolecules, vol. 5, no.3, pp. 818-821, 2004.
  • [27] E. M. Ahmed, "Hydrogel: Preparation, characterization, and applications: A review," Journal of Advanced Research, vol. 6, no. 2, pp. 105-121, 2015.
  • [28] A. Kumar, A. Srivastava, I. Y. Galaev, B. Mattiasson, "Smart polymers: Physical forms and bioengineering applications," Progress in Polymer Science, vol. 32, no. 10, pp. 1205-1237, 2007.
  • [29] Q. Zhao, H. J. Qi, T. Xie, "Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding," Progress in Polymer Science, vol. 49-50, pp. 79-120, 2015.
  • [30] J. L. Drury, D. J. Mooney, "Hydrogels for tissue engineering: Scaffold design variables and applications," Biomaterials, vol. 24, no. 24, pp. 4337-4351, 2003.
  • [31] B. G. Chung, K. H. Lee, A. Khademhosseini, S. H. Lee, "Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering," Lab Chip, vol. 12, no. 1, pp. 45-59, 2012.
  • [32] Y. Qiu, K. Park, "Environment-sensitive hydrogels for drug delivery," Advanced Drug Delivery Reviews, vol. 53, no. 3, pp. 321-339, 2001.
  • [33] M. Nakayama, T. Okano, T. Miyazaki, F. Kohori, K. Sakai, M. Yokoyama, "Molecular design of biodegradable polymeric micelles for temperature-responsive drug release," Journal of Controlled Release, vol. 115, no. 1, pp. 46-56, 2006.
  • [34] H. L. Lim, Y. Hwang, M. Kar, S. Varghese, "Smart hydrogels as functional biomimetic systems," Biomater. Sci., vol. 2, no. 5, pp. 603-618, 2014.
  • [35] X. Zhang, D. Wu, C. C. Chu, "Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex–MA/PNIPAAm hydrogels," Biomaterials, vol. 25, no. 19, pp. 4719-4730, 2004.
  • [36] P. Gupta, K. Vermani, S. Garg, "Hydrogels: From controlled release to pH-responsive drug delivery," Drug Discovery Today, vol. 7, no. 10, pp. 569-579, 2002.
  • [37] S. Krause, F. Zander, G. Bergmann, H. Brandt, H. Wertmer, H. Finkelmann, "Nematic main-chain elastomers: Coupling and orientational behavior," Comptes Rendus Chimie, vol. 12, no. 1-2, pp. 85-104, 2009.
  • [38] J. Scheinpflug, M. Pfeiffenberger, A. Damerau, F. Schwarz, M. Textor, A. Lang, F. Schulze, "Journey into Bone Models: A Review," Genes, vol. 9, no. 5, p. 247, 2018.
  • [39] M. Gümüşderelioğlu, "Yumuşak ve Akıllı Polimerler," Bilim ve Teknik Dergisi, pp. 44-49, 2010.
  • [40] M. Heskins, J. E. Guillet, "Solution Properties of Poly(N-isopropylacrylamide)," Journal of Macromolecular Science: Part A - Chemistry, vol. 2, no. 8, pp. 1441-1455, 1968.
  • [41] D.A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough, S. L. Potisek, M. T. Ong, P.V. Braun, T. J. Martínez, S. R. White, J. S. Moore, N. R. Sottos, "Force-induced activation of covalent bonds in mechanoresponsive polymeric materials," Nature, vol. 459, no. 7243, pp. 68-72, 2009.
  • [42] M. Irie, "Properties and applications of photoresponsive polymers," Pure and Applied Chemistry, vol. 62, no. 8, pp. 1495-1502, 1990.
  • [43] S. Dai, P. Ravi, K. C. Tam, "pH-Responsive polymers: Synthesis, properties and applications," Soft Matter, vol. 4, no. 3, p. 435, 2008.
  • [44] L. Jingcheng, V. S. Reddy, W. A. D. M. Jayathilaka, A. Chinnappan, S. Ramakrishna, R. Ghosh, "Intelligent Polymers, Fibers and Applications," Polymers, vol. 13, no. 9, p. 1427, 2021.
  • [45] M. Wei, Y. Gao, X. Li, M. J. Serpe, "Stimuli-responsive polymers and their applications," Polymer Chemistry, vol. 8, no. 1, pp. 127-143, 2017.
  • [46] A. K. Bajpai, S. K. Shukla, S. Bhanu, S. Kankane, "Responsive polymers in controlled drug delivery," Progress in Polymer Science, vol. 33, no. 11, pp. 1088-1118, 2008.
  • [47] D. Parasuraman, M. J. Serpe, "Poly(N -Isopropylacrylamide) Microgels for Organic Dye Removal from Water," ACS Applied Materials & Interfaces, vol. 3, no. 7, pp. 2732-2737, 2011.
  • [48] M. Ma, L. Guo, D. G. Anderson, R. Langer, "Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients," Science, vol. 339, no. 6116, pp. 186-189, 2013.
  • [49] L. A. Connal, Q. Li, J. F. Quinn, E. Tjipto, F. Caruso, G. G. Qiao, "pH-Responsive Poly(acrylic acid) Core Cross-Linked Star Polymers: Morphology Transitions in Solution and Multilayer Thin Films," Macromolecules, vol. 41, no. 7, pp. 2620-2626, 2008.
  • 50] J. Kim, M. J. Serpe, L. A. Lyon, "Hydrogel Microparticles as Dynamically Tunable Microlenses," Journal of the American Chemical Society, vol. 126, no. 31, pp. 9512-9513, 2004.
  • [51] F. Liu,M. W. Urban, "Dual Temperature and pH Responsiveness of Poly(2-( N , N -dimethylamino)ethyl methacrylate- co—N -butyl acrylate) Colloidal Dispersions and Their Films," Macromolecules, vol. 41, no. 17, pp. 6531-6539, 2008.
  • [52] Q. Zhang, L. Lei, S. Zhu, Gas-Responsive Polymers," ACS Macro Letters, vol. 6, no. 5, pp. 515-522, 2017.
  • [53] J. F. Gohy, Y. Zhao, "Photo-responsive block copolymer micelles: Design and behavior," Chemical Society Reviews, vol. 42, no. 17, p. 7117, 2013.
  • [54] F. D. Jochum, P. Theato, "Temperature- and light-responsive smart polymer materials," Chem. Soc. Rev., vol. 42, no.17, pp. 7468-7483, 2013.
  • [55] P. D. Thornton, R. J. Mart, R. V. Ulijn, "Enzyme-Responsive Polymer Hydrogel Particles for Controlled Release," Advanced Materials, vol. 19, no. 9, pp. 1252-1256, 2007.
  • [56] R. V. Ulijn, "Enzyme-responsive materials: A new class of smart biomaterials," Journal of Materials Chemistry, vol. 16, no. 23, p. 2217, 2006.
  • [57] T. Miyata, N. Asami, T. Uragami, "A reversibly antigen-responsive hydrogel," Nature, vol. 399, no. 6738, pp. 766-769, 1999.
  • [58] Y. Zhao, "Light-Responsive Block Copolymer Micelles," Macromolecules, vol. 45, no. 9, pp. 3647-3657, 2012.
  • [59] G. Charlet, G. Delmas, "Thermodynamic properties of polyolefin solutions at high temperature: 1. Lower critical solubility temperatures of polyethylene, polypropylene and ethylene-propylene copolymers in hydrocarbon solvents," Polymer, vol. 22, no. 9, pp. 1181-1189, 1981.
  • [60] H. Feil, Y. H. Bae, J. Feijen, S. W. Kim, "Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers," Macromolecules, vol. 26, no. 10, pp. 2496-2500, 1993.
  • [61] H. G. Schild, "Poly(N-isopropylacrylamide): Experiment, theory and application," Progress in Polymer Science, vol. 17, no. 2, pp. 163-249, 1992.
  • [62] P. Kujawa, F. M. Winnik, "Volumetric Studies of Aqueous Polymer Solutions Using Pressure Perturbation Calorimetry: A New Look at the Temperature-Induced Phase Transition of Poly(N -isopropylacrylamide) in Water and D2O," Macromolecules, vol. 34, no. 12, pp. 4130-4135, 2001.
  • [63] D. Crespy, R. M. Rossi, "Temperature-responsive polymers with LCST in the physiological range and their applications in textiles," Polymer International, vol. 56, no. 12, pp. 1461-1468, 2007.
  • [64] R. Liu, M. Fraylich, B. R. Saunders, Thermoresponsive copolymers: From fundamental studies to applications," Colloid and Polymer Science, vol. 287, no. 6, pp. 627-643, 2009.
  • [65] M. Cao, Y. Wang, X. Hu, H. Gong, R. Li, H. Cox, J. Zhang, T. A. Waigh, H. Xu, J. R. Lu, "Reversible Thermoresponsive Peptide–PNIPAM Hydrogels for Controlled Drug Delivery," Biomacromolecules, vol. 20, no. 9, pp. 3601-3610, 2019.
  • [66] S. C. Song, S. B. Lee, J. I. Jin, Y. S. Sohn, "A New Class of Biodegradable Thermosensitive Polymers. I. Synthesis and Characterization of Poly(organophosphazenes) with Methoxy-Poly(ethylene glycol) and Amino Acid Esters as Side Groups," Macromolecules, vol. 32, no. 7, pp. 2188-2193, 1999.
  • [67] R. S. Riaz, M. Elsherif, R. Moreddu, I. Rashid, M. U. Hassan, A. K. Yetisen, H. Butt, "Anthocyanin-Functionalized Contact Lens Sensors for Ocular pH Monitoring," ACS Omega, vol. 4, no. 26, pp. 21792-21798, 2019.
  • [68] Y. Zhao, M. Lei, S. X. Liu, Q. Zhao, "Smart hydrogel-based optical fiber SPR sensor for pH measurements," Sensors and Actuators B: Chemical, vol. 261, pp. 226-232, 2018.
  • 69] N. Jiang, R. Ahmed, A. A. Rifat, J. Guo, Y. Yin, Y. Montelongo, H. Butt, A. K. Yetisen, "Functionalized Flexible Soft Polymer Optical Fibers for Laser Photomedicine," Advanced Optical Materials, vol. 6, no. 3, p. 1701118, 2018.
  • [70] A. K. Yetisen, N. Jiang, A. Fallahi, Y. Montelongo, G. U. Ruiz‐Esparza, A. Tamayol, Y. S. Zhang, I. Mahmood, S. Yang, K. S. Kim, H. Butt, A. Khademhosseini, S. Yun, "Glucose‐Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid," Advanced Materials, vol. 29, no. 15, p. 1606380, 2017.
  • [71] B. Mirani, E. Pagan, B. Currie, M. A. Siddiqui, R. Hosseinzadeh, P. Mostofalu, Y. S. Zhang, A. Ghahary, M. Akbari, "An Advanced Multifunctional Hydrogel-Based Dressing for Wound Monitoring and Drug Delivery," Advanced Healthcare Materials, vol. 6, no. 19, p. 1700718, 2017.
  • [72] T. Ikeda, J. Mamiya, Y. Yu, "Photomechanics of Liquid-Crystalline Elastomers and Other Polymers," Angewandte Chemie International Edition, vol. 46, no. 4, pp. 506-528, 2007.
  • [73] T. Chung, A. Romo-Uribe, P. T. Mather, "Two-Way Reversible Shape Memory in a Semicrystalline Network," Macromolecules, vol. 41, no. 1, pp. 184-192, 2008.
  • [74] J. Zotzmann, M. Behl, D. Hofmann, A. Lendlein, "Reversible Triple-Shape Effect of Polymer Networks Containing Polypentadecalactone- and Poly(ε-caprolactone)-Segments," Advanced Materials, vol. 22, no. 31, pp. 3424-3429, 2010.
  • [75] F. Kleinschmidt, M. Hickl, K. Saalwächter, C. Schmidt, H. Finkelmann, "Lamellar Liquid Single Crystal Hydrogels: Synthesis and Investigation of Anisotropic Water Diffusion and Swelling," Macromolecules, vol. 38, no. 23, pp. 9772-9782, 2005.
  • [76] S. A. Willis, G. R. Dennis, G. Zheng, W. S. Price, "Preparation and physical properties of a macroscopically aligned lyotropic hexagonal phase templated hydrogel," Reactive and Functional Polymers, vol. 73, no. 7, pp. 911-922, 2013.
  • [77] H. Xing, J. Li, Y. Shi, J. Guo, J. Wei, "Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer," ACS Applied Materials & Interfaces, vol. 8, no. 14, pp. 9440-9445, 2016.
  • [78] Z. Zhang, Z. Chen, Y. Wang, Y. Zhao, "Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins," Proceedings of the National Academy of Sciences, vol. 117, no. 31, pp. 18310-18316, 2020.
  • [79] G. H. Lee, S. H. Han, J. B. Kim, J. H. Kim, J. M. Lee, S. H. Kim, "Colloidal Photonic Inks for Mechanochromic Films and Patterns with Structural Colors of High Saturation," Chemistry of Materials, vol. 31, no. 19, pp. 8154-8162. 2019.
  • [80] H. Yi, S. Lee, H. Ko, D. Lee, W. Bae, T. Kim, D. S. Hwang, H. E. Jeong, "Ultra‐Adaptable and Wearable Photonic Skin Based on a Shape‐Memory, Responsive Cellulose Derivative," Advanced Functional Materials, vol. 29, no. 34, p. 1902720, 2019.
  • [81] A. Lendlein, S. Kelch, "Shape-Memory Polymers," Angewandte Chemie International Edition, vol. 41, no. 12, p. 2034, 2002.
  • [82] X. Wu, W. Huang, Y. Zhao, Z. Ding, C. Tang, J. Zhang, "Mechanisms of the Shape Memory Effect in Polymeric Materials," Polymers, vol. 5, no. 4, pp. 1169-1202, 2013.
  • [83] W. M. Huang, Y. Zhao, C. C. Wang, Z. Ding, H. Purnawali, C. Tang, J. L. Zhang, "Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization," Journal of Polymer Research, vol. 19, no. 9, p. 9952, 2012.
  • [84] S. Miyazaki, Y. Q. Fu, W. M. Huang, Eds., Thin Film Shape Memory Alloys: Fundamentals and Device Applications. Cambridge University Press, 2009.
  • [85] L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, C. Tang, "Stimulus-responsive shape memory materials: A review," Materials & Design, vol. 33, pp. 577-640, 2012.
  • [86] L. Peponi, M. P. Arrieta, A. Mujica-Garcia, D. López, "Smart Polymers", in Modification of Polymer Properties, C. F. Jasso-Gastinel, J. M. Kenny, Eds. New York: William Andrew Publishing, 2017, pp-131-154.
  • [87] M. Behl, M. Y. Razzaq, A. Lendlein, "Multifunctional Shape-Memory Polymers," Advanced Materials, vol. 22, no. 31, pp. 3388-3410, 2010.
  • [88] I. K. Kuder, A. F. Arrieta, W. E. Raither, P. Ermanni, "Variable stiffness material and structural concepts for morphing applications," Progress in Aerospace Sciences, vol. 63, pp. 33-55, 2013.
  • [89] C. Wischke, A. Lendlein, "Shape-Memory Polymers as Drug Carriers—A Multifunctional System," Pharmaceutical Research, vol. 27, no. 4, pp. 527-529, 2010.
  • [90] L. Zhang, H. Du, L. Liu, Y. Liu, J. Leng, "Analysis and design of smart mandrels using shape memory polymers," Composites Part B: Engineering, vol. 59, pp. 230-237, 2010.
  • [91] A. Lendlein, A. M. Schmidt, R. Langer, "AB-polymer networks based on oligo(ɛ-caprolactone) segments showing shape-memory properties," Proceedings of the National Academy of Sciences, vol. 98, no. 3, pp. 842-847, 2001.
  • [92] H. Fischer, "Self-repairing material systems―a dream or a reality," Natural Science, vol. 02, no. 08, pp. 873-901, 2010.
  • [93] S. J. García, H. R. Fischer, S. van der Zwaag, "A critical appraisal of the potential of self healing polymeric coatings," Progress in Organic Coatings, vol. 72, no. 3, pp. 211-221, 2011.
  • [94] C. Dry, "Procedures developed for self-repair of polymer matrix composite materials," Composite Structures, vol. 35, no. 3, pp. 263-269, 1996.
  • [95] N. Zhong, W. Post, "Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: A review," Composites Part A: Applied Science and Manufacturing, vol. 69, pp. 226-239, 2015.
  • [96] M. D. Hager, P. Greil, C. Leyens, S. van der Zwaag, U. S. Schubert, "Self-Healing Materials," Advanced Materials, vol. 22, no. 47, pp. 5424-5430, 2010.
  • [97] X. K. D. Hillewaere, F. E. Du Prez, "Fifteen chemistries for autonomous external self-healing polymers and composites," Progress in Polymer Science, vol. 49-50, pp. 121-153, 2015.
  • [98] N. K. Guimard, K. K. Oehlenschlaeger, J. Zhou, S. Hilf, F. G. Schmidt, C. B. Kowollik, "Current Trends in the Field of Self-Healing Materials," Macromolecular Chemistry and Physics, vol. 213, no. 2, pp. 131-143, 2012.
  • [99] T. Nesterova, K. D. Johansen, S. Kill, "Synthesis of durable microcapsules for self-healing anticorrosive coatings: A comparison of selected methods," Progress in Organic Coatings, vol. 70, pp. 342-352, 2011.
  • [100] M. den Brabander, H.R. Fischer, S.J. Garcia, "Self-Healing Polymeric Systems: Concepts and Applications", in Smart Polymers and their Applications, A. M. Rosa and S. R. Julio, Eds. Sawston: Woodhead Publishing, 2019, pp-379-409.
  • [101] S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, "Autonomic healing of polymer composites," Nature, vol. 409, no. 6822, pp. 794-797, 2001.
  • [102] E. N. Brown, N. R. Sottos, S. R. White, "Fracture testing of a self-healing polymer composite," Experimental Mechanics, vol. 42, pp. 372–379, 2002.
  • [103] E. N. Brown, N. R. Sottos, "Performance of embedded microspheres for self-healing polymer composites," Society for Experimental Mechanics IX International Congress on Experimental, 2000, pp. 563-566.
  • [104] D. Jung, "Performance and properties of embedded microspheres for self-repairing applications," M. S. thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • [105] İ. Karagöz, "Termoplastiklerin sürtünme karıştırma kaynak özellikleri" Ph.D. thesis, Fen Bilimleri Enstitüsü, Marmara Üniversitesi, Göztepe, İstanbul, 2014.
  • [106] H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, "Thermal conductivity of polymer-based composites: Fundamentals and applications," Progress in Polymer Science, vol. 59, pp. 41-85, 2016.
  • [107] H. Lu, Y. Yao, W. M. Huang, D. Hui, "Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites," Composites Part B: Engineering, vol. 67, pp. 290-295, 2014.
  • [108] C. S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou, A. Harvey, C. Backes, Z. Li, M. S. Ferreira, M. E. Möbius, R. J. Young, J. N. Coleman, "Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites," Science, vol. 354, no. 6317, pp. 1257-1260, 2016.
  • [109] S. Yu, J. Lee, T. H. Han, C. Park, Y. Kwon, S. M. Hong, C. M. Koo, "Copper Shell Networks in Polymer Composites for Efficient Thermal Conduction," Applied Materials & Interfaces, vol. 5, pp. 11618-11622, 2013.
  • [110] J. R. Reynolds, B. C. Thompson, T. A. Skotheim, Handbook of Conducting Polymers. Boca Raton: CRC Press, 2019.
  • [111] A. Puiggalí-Jou, L. J. del Valle, C. Alemán, "Drug delivery systems based on intrinsically conducting polymers," Journal of Controlled Release, vol. 309, pp. 244-264, 2019.
  • [112] R. Feiner, L. Engel, S. Fleischer, M. Malki, I. Gal, A. Shapira, Y. Shacham-Diamand, T. Dvir, "Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function," Nature Materials, vol. 15, no. 6, pp. 679-685, 2016.
  • [113] S. Taccola, F. Greco, E. Sinibaldi, A. Mondini, B. Mazzolai, V. Mattoli, "Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators," Advanced Materials, vol. 27, no. 10, pp. 1668-1675.
  • [114] S. Takamatsu, T. Lonjaret, D. Crisp, J. M. Badier, G. G. Malliaras, E. Ismailova, (2015). "Direct patterning of organic conductors on knitted textiles for long-term electrocardiography," Scientific Reports, vol. 5, no. 1, p. 15003, 2015.
There are 114 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Article
Authors

Derya Mutlu 0000-0001-9188-7847

İdris Karagöz 0000-0002-2644-8511

Publication Date March 1, 2023
Submission Date April 21, 2022
Acceptance Date October 26, 2022
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

IEEE D. Mutlu and İ. Karagöz, “AKILLI MALZEME OLARAK POLİMERLER VE UYGULAMALARI”, KONJES, vol. 11, no. 1, pp. 274–299, 2023, doi: 10.36306/konjes.1106955.