Research Article
BibTex RIS Cite

Investigation of Properties of Microcrystalline Cellulose and Apple Peel Incorporated Polylactic Acid Based Films

Year 2023, Volume: 11 Issue: 1, 180 - 190, 01.03.2023
https://doi.org/10.36306/konjes.1178923

Abstract

Studies on the development of PLA-based biocomposite films have gained momentum in recent years. In this study, apple peel (%0,5 w/w) and/or microcrystalline cellulose (%0,5 w/w) loaded polylactic acid based films were produced via solvent casting method. The effects of using the additives individually and together on the structural, mechanical and optical properties of the films were characterized by using FT-IR spectrophotometer, mechanical tester, thermogravimetric analyzer (TGA) and UV-3600 spectrophotometer, respectively. Additives showed good dispersion in the polymer matrix. The addition of additives increased the tensile strength and the flexibility of the neat PLA films, while slightly decreased the transparency. It was determined that the film with the highest tensile strength (41.36 ± 0.7 MPa) was the apple peel loaded PLA film. All the films had good thermal stability. When the apple peel and/or microcrystalline cellulose loaded films were compared with the pure PLA film, it was determined that there was no change on thermal degradation behavior of the films. The successful production of PLA biocomposite films indicated that they have potential to be used as environmental-friendly packaging materials.

References

  • [1] P. Dhar, D. Tarafder, A. Kumar, and V. Katiyar, “Thermally recyclable polylactic acid/cellulose nanocrystal films through reactive extrusion process,” Polymer, vol. 87, pp. 268-282, 2016.
  • [2] C. G. Li, W. G. Peng, Y. X. Li, P. F. Xu, W. Tian, and R. Zhang, “ Thermal and mechanical properties of bagasse microcrystalline cellulose reinforced PLA composites,” Advanced Materials Research, vol. 284, pp. 1786-1789.
  • [3] R. D. Kale, V. G. Gorade, N. Madye, B. Chaudhary, P. S. Bangde, and P. P. Dandekar, “Preparation and characterization of biocomposite packaging film from poly(lactic acid) and acylated microcrystalline cellulose using rice bran oil,” International Journal of Biological Macromolecules, vol. 118, no. Part A, pp. 1090-1102, 2018.
  • [4] M. P. Arrieta, J. López, S. Ferrándiz, and M. A. Peltzer, “Characterization of PLA-limonene blends for food packaging applications,” Polymer Testing, vol. 32, no. 4, pp. 760-768, 2013.
  • [5] A. Bartos, K. Nagy, J. Anggono, A. H. Purwaningsih, J. Móczó, and B. Pukánszky, “ Biobased PLA/sugarcane bagasse fiber composites: Effect of fiber characteristics and interfacial adhesion on properties,” Composites Part A: Applied Science and Manufacturing, vol. 143, pp. 106273,2021.
  • [6] F.A.D. Santos, G.C.V. Iulianelli, and M. I.B. Tavares, “Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix,” Polymer Testing, vol. 61, pp. 280-288,2017.
  • [7] M.T. Zafar, S.N. Maiti, and A.K. Ghosh, “Effect of surface treatments of jute fibers on the microstructural and mechanical responses of poly(lactic acid)/jute fiber biocomposites,” RSC Advances, vol. 6, pp. 73373-73382, 2016.
  • [8] B. Asaithambi, G. Ganesan, and S. Ananda Kumar, “Bio-composites: Development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites,” Fibers and Polymers, vol. 15, pp. 847–854, 2014.
  • [9] U. K. Komal, M. K. Lila, and I. Singh, “Processing of PLA/pineapple fiber based next generation composites,” Materials and Manufacturing Processes, vol. 36, no. 14, pp.1677-1692, 2021.
  • [10] J. Y. Jang, T. K. Jeong, H. J. Oh, J. R. Youn, and Y. S. Song, “Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites,” Composites Part B: Engineering, vol. 43, no. 5, pp. 2434-2438, 2012.
  • [11] H.P.S. Abdul-Khalil, T.K. Lai, Y.Y. Tye, M. T. Paridah, M. R. Nurul Fazita, A. A. Azniwati, R. Dungani, and S. Rizal, “Preparation and Characterization of Microcrystalline Cellulose from Sacred Bali Bamboo as Reinforcing Filler in Seaweed-based Composite Film,” Fibers and Polymers, vol. 19, pp. 423–434, 2018.
  • [12] X. Huang, F. Xie, and X. Xiong, “Surface-modified microcrystalline cellulose for reinforcement of chitosan film,” Carbohydrate Polymers, vol. 201, pp. 367-373,2018.
  • [13] M. A. Hamdan, N.A. Ramli, N. A. Othman, K.N.M. Amin, and F. Adam, “Characterization and property investigation of microcrystalline cellulose (MCC) and carboxymethyl cellulose (CMC) filler on the carrageenan-based biocomposite film,” Materials Today: Proceedings, vol. 42, no. 1, pp. 56-62, 2021.
  • [14] U. C. Paul, D. Fragouli, I. S. Bayer, A. Zych, and A. Athanassiou, “Effect of Green Plasticizer on the Performance of Microcrystalline Cellulose/Polylactic Acid Biocomposites,” ACS Applied Polymer Materials, vol. 3, no. 6, pp. 3071–3081, 2021.
  • [15] C.C. Daniel-Mkpume, R.C. Ahaiwe, C.L. Ifenatuorah, I. C. E. Ike-Eze, V. S. Aigbodion, S.V. Egoigwe, and E.G. Okonkwo, “Potential end of life application of African star apple shell and waste toner powder as composite filler materials,” Journal of Material Cycles and Waste Management, vol. 24, pp. 680–691, 2022.
  • [16] S.H. Shin, S.J. Kim, S.H. Lee, K. M. Park, and J. Han, “Apple Peel and Carboxymethylcellulose-Based Nanocomposite Films Containing Different Nanoclays,” Journal of Food Science , vol. 79, no. 3, pp. E342-E353, 2014.
  • [17] M.S. Akter, M. Ahmed, and J.B. Eun, “Effect of blanching and drying temperatures on the physicochemical characteristics, dietary fiber composition and antioxidant-related parameters of dried persimmons peel powder,” International Journal of Food Science and Nutrution, vol. 61, pp. 702–712,2010.
  • [18] A. Riaz, C. Lagnika, M. Abdin, M.M. Hashim, and W. Ahmed, “Preparation and Characterization of Chitosan/Gelatin-Based Active Food Packaging Films Containing Apple Peel Nanoparticles,” Journal of Polymers and the Environment, vol. 28, pp. 411–420, 2020.
  • [19] P. Terzioğlu, F. Güney, F. N. Parın, İ. Şen, and S. Tuna, “Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications,” Food Packaging and Shelf Life, vol. 30, no. 100742, 2021.
  • [20] P. Terzioglu, and Y. Sıcak, “Citrus Limon L. Peel Powder Incorporated Polyvinyl Alcohol/Corn Starch Antioxidant Active Films,” Journal of the Institute of Science and Technology, vol. 11: 2,pp. 1311-1320, 2021.
  • [21] A. Riaz, S. Lei, H.M.S. Akhtar, P. Wan, D. Chen, S. Jabbar, M. Abid, M.M. Hashim, and X. Zeng, “Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols,” International Journal of Biological Macromolecules, vol. 114, pp. 547-555, 2018.
  • [22] M. Okur, “Borik asit, sitrik asit, askorbik asit içeren polikaprolakton/halloysit filmlerin ambalaj malzemesi olarak değerlendirilmesi,” Politeknik Dergisi, vol. 24, no. 1, pp. 315-321, 2021.
  • [23] E.F. Sucinda, M.S.A. Majid, M.J.M. Ridzuan, E.M. Cheng, H.A. Alshahrani, and N. Mamat, “ Development and characterisation of packaging film from Napier cellulose nanowhisker reinforced polylactic acid (PLA) bionanocomposites,” International Journal of Biological Macromolecules, vol. 187, pp. 43-53, 2021.
  • [24] M.K.M. Haafiz, A. Hassan, Z. Zakaria, I.M. Inuwa, M.S. Islam, and M. Jawaid, “Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose,” Carbohydrate Polymers, vol. 98, no. 1, pp. 139-145, 2013.
  • [25] D. Y. Liu, X. W. Yuan, D. Bhattacharyya, and A. J. Easteal, “Characterisation of solution cast cellulose nanofibre – reinforced poly(lactic acid) ,” eXPRESS Polymer Letters ,vol. 4, no. 1, pp. 26-31, 2010.
  • [26] R. Z. Khoo, W.S. Chow, and H. Ismail, “Tensile, thermal and ultra-violet shielding enhancement of poly(lactic acid) bionanocomposite film using cellulose nanocrystals extracted from sugarcane bagasse,” Journal of Thermoplastic Composite Materials, 2022.
  • [27] S. Roy, and J. W. Rhım, “Preparation of bioactive functional poly (lactic acid)/curcumin composite film for food packaging application,” International Journal of Biological Macromolecules, vol. 162, pp. 1780-1789, 2020.
  • [28] M.P. Arrieta, J. López, E. Rayón, and A. Jiménez, “Disintegrability under composting conditions of plasticized PLA–PHB blends,” Polymer Degradation and Stability, vol. 108, pp. 307-318, 2014.
  • [29] R. Nasrin, S. Biswas, T. U. Rashid, S. Afrin, R.A. Jahan, P. Haque, and M.M. Rahman, “Preparation of Chitin-PLA laminated composite for implantable application,” Bioactive Materials, vol. 2, no. 4,pp. 199-207, 2017.
  • [30] L. Jiang, F. Wang, X. Xie, C. Xie, A. Li, N. Xia, X. Gong, and H. Zhang, “Development and characterization of chitosan/guar gum active packaging containing walnut green husk extract and its application on fresh-cut apple preservation,” International Journal of Biological Macromolecules, vol. 209, no. Part A, pp. 1307-1318, 2022.
  • [31] N. Gürler, S. Paşa, M. H. Alma, and H. Temel, “The fabrication of bilayer polylactic acid films from cross-linked starch as eco-friendly biodegradable materials: Synthesis, characterization, mechanical and physical properties,” European Polymer Journal, vol. 127, pp. 109588, 2020.
  • [32] J. Xu, J. Zhang, W. Gao, H. Liang, H. Wang, and J. Li, “Preparation of chitosan/PLA blend micro/nanofibers by electrospinning,” Materials Letters, vol. 63, no. 8, pp. 658-660,2009.
  • [33] Y. Wang, Y. Qin, Y. Zhang, M. Yuan, H. Li, and M. Yuan, “Effects of N-octyl lactate as plasticizer on the thermal and functional properties of extruded PLA-based films,” International Journal of Biological Macromolecules, vol. 67, pp. 58-63, 2014.

MİKROKRİSTALİN SELÜLOZ VE ELMA KABUĞU KATKILI POLİLAKTİK ASİT ESASLI FİLMLERİN ÖZELLİKLERİNİN İNCELENMESİ

Year 2023, Volume: 11 Issue: 1, 180 - 190, 01.03.2023
https://doi.org/10.36306/konjes.1178923

Abstract

Bu çalışmada çözelti döküm yöntemi ile elma kabuğu ve/veya mikrokristalin selüloz katkılı polilaktik asit esaslı filmler üretildi. Filmlerin yapısal, mekanik ve optik özellikleri karakterize edildi. Katkı maddelerinin eklenmesi, saf PLA filmlerin çekme dayanımı ve esnekliğini arttırırken, şeffaflığını biraz azalttı. PLA biyokompozit filmlerinin başarılı üretimi, çevre dostu ambalaj malzemeleri olarak kullanılma potansiyeline sahip olduklarını gösterdi.

References

  • [1] P. Dhar, D. Tarafder, A. Kumar, and V. Katiyar, “Thermally recyclable polylactic acid/cellulose nanocrystal films through reactive extrusion process,” Polymer, vol. 87, pp. 268-282, 2016.
  • [2] C. G. Li, W. G. Peng, Y. X. Li, P. F. Xu, W. Tian, and R. Zhang, “ Thermal and mechanical properties of bagasse microcrystalline cellulose reinforced PLA composites,” Advanced Materials Research, vol. 284, pp. 1786-1789.
  • [3] R. D. Kale, V. G. Gorade, N. Madye, B. Chaudhary, P. S. Bangde, and P. P. Dandekar, “Preparation and characterization of biocomposite packaging film from poly(lactic acid) and acylated microcrystalline cellulose using rice bran oil,” International Journal of Biological Macromolecules, vol. 118, no. Part A, pp. 1090-1102, 2018.
  • [4] M. P. Arrieta, J. López, S. Ferrándiz, and M. A. Peltzer, “Characterization of PLA-limonene blends for food packaging applications,” Polymer Testing, vol. 32, no. 4, pp. 760-768, 2013.
  • [5] A. Bartos, K. Nagy, J. Anggono, A. H. Purwaningsih, J. Móczó, and B. Pukánszky, “ Biobased PLA/sugarcane bagasse fiber composites: Effect of fiber characteristics and interfacial adhesion on properties,” Composites Part A: Applied Science and Manufacturing, vol. 143, pp. 106273,2021.
  • [6] F.A.D. Santos, G.C.V. Iulianelli, and M. I.B. Tavares, “Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix,” Polymer Testing, vol. 61, pp. 280-288,2017.
  • [7] M.T. Zafar, S.N. Maiti, and A.K. Ghosh, “Effect of surface treatments of jute fibers on the microstructural and mechanical responses of poly(lactic acid)/jute fiber biocomposites,” RSC Advances, vol. 6, pp. 73373-73382, 2016.
  • [8] B. Asaithambi, G. Ganesan, and S. Ananda Kumar, “Bio-composites: Development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites,” Fibers and Polymers, vol. 15, pp. 847–854, 2014.
  • [9] U. K. Komal, M. K. Lila, and I. Singh, “Processing of PLA/pineapple fiber based next generation composites,” Materials and Manufacturing Processes, vol. 36, no. 14, pp.1677-1692, 2021.
  • [10] J. Y. Jang, T. K. Jeong, H. J. Oh, J. R. Youn, and Y. S. Song, “Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites,” Composites Part B: Engineering, vol. 43, no. 5, pp. 2434-2438, 2012.
  • [11] H.P.S. Abdul-Khalil, T.K. Lai, Y.Y. Tye, M. T. Paridah, M. R. Nurul Fazita, A. A. Azniwati, R. Dungani, and S. Rizal, “Preparation and Characterization of Microcrystalline Cellulose from Sacred Bali Bamboo as Reinforcing Filler in Seaweed-based Composite Film,” Fibers and Polymers, vol. 19, pp. 423–434, 2018.
  • [12] X. Huang, F. Xie, and X. Xiong, “Surface-modified microcrystalline cellulose for reinforcement of chitosan film,” Carbohydrate Polymers, vol. 201, pp. 367-373,2018.
  • [13] M. A. Hamdan, N.A. Ramli, N. A. Othman, K.N.M. Amin, and F. Adam, “Characterization and property investigation of microcrystalline cellulose (MCC) and carboxymethyl cellulose (CMC) filler on the carrageenan-based biocomposite film,” Materials Today: Proceedings, vol. 42, no. 1, pp. 56-62, 2021.
  • [14] U. C. Paul, D. Fragouli, I. S. Bayer, A. Zych, and A. Athanassiou, “Effect of Green Plasticizer on the Performance of Microcrystalline Cellulose/Polylactic Acid Biocomposites,” ACS Applied Polymer Materials, vol. 3, no. 6, pp. 3071–3081, 2021.
  • [15] C.C. Daniel-Mkpume, R.C. Ahaiwe, C.L. Ifenatuorah, I. C. E. Ike-Eze, V. S. Aigbodion, S.V. Egoigwe, and E.G. Okonkwo, “Potential end of life application of African star apple shell and waste toner powder as composite filler materials,” Journal of Material Cycles and Waste Management, vol. 24, pp. 680–691, 2022.
  • [16] S.H. Shin, S.J. Kim, S.H. Lee, K. M. Park, and J. Han, “Apple Peel and Carboxymethylcellulose-Based Nanocomposite Films Containing Different Nanoclays,” Journal of Food Science , vol. 79, no. 3, pp. E342-E353, 2014.
  • [17] M.S. Akter, M. Ahmed, and J.B. Eun, “Effect of blanching and drying temperatures on the physicochemical characteristics, dietary fiber composition and antioxidant-related parameters of dried persimmons peel powder,” International Journal of Food Science and Nutrution, vol. 61, pp. 702–712,2010.
  • [18] A. Riaz, C. Lagnika, M. Abdin, M.M. Hashim, and W. Ahmed, “Preparation and Characterization of Chitosan/Gelatin-Based Active Food Packaging Films Containing Apple Peel Nanoparticles,” Journal of Polymers and the Environment, vol. 28, pp. 411–420, 2020.
  • [19] P. Terzioğlu, F. Güney, F. N. Parın, İ. Şen, and S. Tuna, “Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications,” Food Packaging and Shelf Life, vol. 30, no. 100742, 2021.
  • [20] P. Terzioglu, and Y. Sıcak, “Citrus Limon L. Peel Powder Incorporated Polyvinyl Alcohol/Corn Starch Antioxidant Active Films,” Journal of the Institute of Science and Technology, vol. 11: 2,pp. 1311-1320, 2021.
  • [21] A. Riaz, S. Lei, H.M.S. Akhtar, P. Wan, D. Chen, S. Jabbar, M. Abid, M.M. Hashim, and X. Zeng, “Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols,” International Journal of Biological Macromolecules, vol. 114, pp. 547-555, 2018.
  • [22] M. Okur, “Borik asit, sitrik asit, askorbik asit içeren polikaprolakton/halloysit filmlerin ambalaj malzemesi olarak değerlendirilmesi,” Politeknik Dergisi, vol. 24, no. 1, pp. 315-321, 2021.
  • [23] E.F. Sucinda, M.S.A. Majid, M.J.M. Ridzuan, E.M. Cheng, H.A. Alshahrani, and N. Mamat, “ Development and characterisation of packaging film from Napier cellulose nanowhisker reinforced polylactic acid (PLA) bionanocomposites,” International Journal of Biological Macromolecules, vol. 187, pp. 43-53, 2021.
  • [24] M.K.M. Haafiz, A. Hassan, Z. Zakaria, I.M. Inuwa, M.S. Islam, and M. Jawaid, “Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose,” Carbohydrate Polymers, vol. 98, no. 1, pp. 139-145, 2013.
  • [25] D. Y. Liu, X. W. Yuan, D. Bhattacharyya, and A. J. Easteal, “Characterisation of solution cast cellulose nanofibre – reinforced poly(lactic acid) ,” eXPRESS Polymer Letters ,vol. 4, no. 1, pp. 26-31, 2010.
  • [26] R. Z. Khoo, W.S. Chow, and H. Ismail, “Tensile, thermal and ultra-violet shielding enhancement of poly(lactic acid) bionanocomposite film using cellulose nanocrystals extracted from sugarcane bagasse,” Journal of Thermoplastic Composite Materials, 2022.
  • [27] S. Roy, and J. W. Rhım, “Preparation of bioactive functional poly (lactic acid)/curcumin composite film for food packaging application,” International Journal of Biological Macromolecules, vol. 162, pp. 1780-1789, 2020.
  • [28] M.P. Arrieta, J. López, E. Rayón, and A. Jiménez, “Disintegrability under composting conditions of plasticized PLA–PHB blends,” Polymer Degradation and Stability, vol. 108, pp. 307-318, 2014.
  • [29] R. Nasrin, S. Biswas, T. U. Rashid, S. Afrin, R.A. Jahan, P. Haque, and M.M. Rahman, “Preparation of Chitin-PLA laminated composite for implantable application,” Bioactive Materials, vol. 2, no. 4,pp. 199-207, 2017.
  • [30] L. Jiang, F. Wang, X. Xie, C. Xie, A. Li, N. Xia, X. Gong, and H. Zhang, “Development and characterization of chitosan/guar gum active packaging containing walnut green husk extract and its application on fresh-cut apple preservation,” International Journal of Biological Macromolecules, vol. 209, no. Part A, pp. 1307-1318, 2022.
  • [31] N. Gürler, S. Paşa, M. H. Alma, and H. Temel, “The fabrication of bilayer polylactic acid films from cross-linked starch as eco-friendly biodegradable materials: Synthesis, characterization, mechanical and physical properties,” European Polymer Journal, vol. 127, pp. 109588, 2020.
  • [32] J. Xu, J. Zhang, W. Gao, H. Liang, H. Wang, and J. Li, “Preparation of chitosan/PLA blend micro/nanofibers by electrospinning,” Materials Letters, vol. 63, no. 8, pp. 658-660,2009.
  • [33] Y. Wang, Y. Qin, Y. Zhang, M. Yuan, H. Li, and M. Yuan, “Effects of N-octyl lactate as plasticizer on the thermal and functional properties of extruded PLA-based films,” International Journal of Biological Macromolecules, vol. 67, pp. 58-63, 2014.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Pınar Terzioğlu 0000-0003-4114-7044

Kemal Can Tohumcu This is me 0000-0001-8313-4829

Publication Date March 1, 2023
Submission Date September 23, 2022
Acceptance Date December 14, 2022
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

IEEE P. Terzioğlu and K. C. Tohumcu, “MİKROKRİSTALİN SELÜLOZ VE ELMA KABUĞU KATKILI POLİLAKTİK ASİT ESASLI FİLMLERİN ÖZELLİKLERİNİN İNCELENMESİ”, KONJES, vol. 11, no. 1, pp. 180–190, 2023, doi: 10.36306/konjes.1178923.