Research Article
BibTex RIS Cite

Control of Nanoparticle Distribution of Super Critical CO2 in P3HT/PCBM and PVP-AgNP Materials

Year 2023, Volume: 11 Issue: 2, 543 - 556, 01.06.2023
https://doi.org/10.36306/konjes.1224605

Abstract

Today, polymeric nanocomposite materials are in the first place in the group of primarily preferred materials among composite materials. It is very important to find, develop, and produce the properties of composite materials with nano-sized reinforcement particles. In this study, supercritical CO₂ annealing was performed after P3HT-PCBM and PVP-Ag nanopowder (PVP-AgNP) thin films were prepared by spin coating method. The produced films were then analyzed with optical microscope, scanning electron microscope, and atomic force microscope. As a result of these investigations, it has been observed that surface migration control can be made comprehensively by superficial phase separation of particles over CO₂ annealing variables in P3HT-PCBM and PVP-AgNP samples. It has been determined that the particle concentration distribution varies depending on the amount of CO2 in the polymer. Thus, by understanding the properties of polymer nanocomposites, it has been understood that expanding the usage areas, producing new materials with low cost and the CO2 critical wetting mechanism can be used in the best way with different systems.

Project Number

FBA-2018-8320

References

  • [1] S. Sareen, G. Mathew, and L. Joseph, “Improvement in solubility of poor water-soluble drugs by solid dispersion,” Int. J. Pharm. Investig., vol. 2, no. 1, p. 12, 2012, doi: 10.4103/2230- 973X.96921.
  • [2] M. Sihvonen, E. Järvenpää, V. Hietaniemi, and R. Huopalahti, “Advances in supercritical carbon dioxide technologies,” Trends Food Sci. Technol., vol. 10, no. 6–7, pp. 217–222, Jun. 1999, doi: 10.1016/S0924-2244(99)00049-7.
  • [3] B. Subramaniam, R. A. Rajewski, and K. Snavely, “Pharmaceutical Processing with Supercritical Carbon Dioxide,” J. Pharm. Sci., vol. 86, no. 8, pp. 885–890, Aug. 1997, doi: 10.1021/JS9700661.
  • [4] P. J. Ginty, M. J. Whitaker, K. M. Shakesheff, and S. M. Howdle, “Drug delivery goes supercritical,” Mater. Today, vol. 8, no. 8 SUPPL., pp. 42–48, 2005, doi: 10.1016/S1369- 7021(05)71036-1.
  • [5] K. Byrappa, S. Ohara, and T. Adschiri, “Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications,” Adv. Drug Deliv. Rev., vol. 60, no. 3, pp. 299– 327, Feb. 2008, doi: 10.1016/J.ADDR.2007.09.001.
  • [6] T. Koga et al., “Low-density polymer thin film formation in supercritical carbon dioxide,” Appl. Phys. Lett., vol. 83, no. 21, pp. 4309–4311, 2003, doi: 10.1063/1.1629799.
  • [7] T. Koga et al., “The Role of Elasticity in the Anomalous Swelling of Polymer Thin Films in Density Fluctuating Supercritical Fluids,” 2003, doi: 10.1021/ma021265w.
  • [8] X.-T. Zhou et al., “Dynamics of polymer thin films in supercritical carbon dioxide You may also like Highly Efficient Aerobic Oxidation of Cyclohexene Catalyzed by Iron(III) Porphyrins in Supercritical Carbon Dioxide Supercritical CO 2 preparation of SBA-15 supported ionic liquid and its adsorption for CO-Review-Supercritical Deposition: A Powerful Technique for Synthesis of Functional Materials for Electrochemical Energy Conversion and Storage.”
  • [9] T. Koga et al., “Neutron reflectivity study of glassy polymer brushes in density fluctuating supercritical carbon dioxide,” J. Polym. Sci. Part B Polym. Phys., vol. 42, no. 17, pp. 3282–3289, Sep. 2004, doi: 10.1002/POLB.20179.
  • [10] J. M. DeSimone, Z. Guan, and C. S. Elsbernd, “Synthesis of fluoropolymers in supercritical carbon dioxide,” Science (80-. )., vol. 257, no. 5072, pp. 945–947, 1992, doi: 10.1126/Science .257.5072.945.
  • [11] N. Jiang et al., “Novel Effects of Compressed CO2 Molecules on Structural Ordering and Charge Transport in Conjugated Poly(3-hexylthiophene) Thin Films,” Langmuir, vol. 32, no. 42, pp. 10851–10860, 2016, doi: 10.1021/acs.langmuir.6b03239.
  • [12] M. Asada, P. Gin, M. K. Endoh, S. K. Satija, T. Taniguchi, and T. Koga, “Directed self-assembly of nanoparticles at the polymer surface by highly compressible supercritical carbon dioxide,” Soft Matter, vol. 7, no. 19, pp. 9231–9238, 2011, doi: 10.1039/c1sm05693j.
  • [13] M. Asada et al., “Melt crystallization/dewetting of ultrathin PEO films via carbon dioxide annealing: The effects of polymer adsorbed layers,” Soft Matter, vol. 10, no. 34, pp. 6392–6403, Sep. 2014, doi: 10.1039/C4SM00683F.
  • [14] Y. Higaki, R. Ishige, and A. Takahara, “Fluoropolymer Surfaces/Interfaces,” Handb. Fluoropolymer Sci. Technol., pp. 433–450, May 2014, doi: 10.1002/9781118850220.CH19.

SÜPER KRİTİK CO2’nin P3HT/PCBM ve PVP-AgNP MALZEMELERDE NANOPARTİKÜL DAĞILIMININ KONTROLÜ

Year 2023, Volume: 11 Issue: 2, 543 - 556, 01.06.2023
https://doi.org/10.36306/konjes.1224605

Abstract

Günümüzde, polimerik nanokompozit malzemeler kompozit malzemeler içinde öncelikli olarak tercih edilen malzeme grubunda ilk sırada bulunmaktadır. Nano boyutta takviye taneciklerinin yer aldığı kompozit malzemelerin niteliklerinin bulunması, geliştirilmesi, ve üretilmesi oldukça önem arzetmektedir. Bu çalışmada, P3HT-PCBM, ve PVP-Ag nanotoz (PVP-AgNP) ince filmleri döndürmeli kaplama yöntemi ile hazırlandıktan sonra süoer kritik CO₂ tavlaması yapılmıştır. Üretilen filmlerin daha sonra optik mikroskop, taramalı elektron mikroskobu ve atomik kuvvet mikroskop ile analizleri yapılmıştır. Bu araştırmaların sonucunda, P3HT-PCBM ve PVP-AgNP numunelerinde, CO₂ tavlama değişkenleri üzerinden partiküllerin yüzelsey faz ayrışması ile yüzey göçü kontrolünün kapsamlı bir şekilde yapılabildiği gözlenmiştir. Polimer içinde yer alan CO2 miktarına bağlı olarak partikül konsantrasyon dağılımının değişkenlik gösterdiği saptanmıştır. Böylelikle polimer nanokompozitlerin özelliklerinin anlaşılarak kullanım alanlarının genişletilmesi, düşük maliyete sahip yeni malzemelerin üretilmesi ve CO2 kritik ıslatma mekanizmasının farklı sistemler ile en iyi şekilde kullanılabileceği anlaşılmıştır.

Supporting Institution

erciyes üniversitesi Bilimsel Araştırma Projeler Birimi (BAP)

Project Number

FBA-2018-8320

References

  • [1] S. Sareen, G. Mathew, and L. Joseph, “Improvement in solubility of poor water-soluble drugs by solid dispersion,” Int. J. Pharm. Investig., vol. 2, no. 1, p. 12, 2012, doi: 10.4103/2230- 973X.96921.
  • [2] M. Sihvonen, E. Järvenpää, V. Hietaniemi, and R. Huopalahti, “Advances in supercritical carbon dioxide technologies,” Trends Food Sci. Technol., vol. 10, no. 6–7, pp. 217–222, Jun. 1999, doi: 10.1016/S0924-2244(99)00049-7.
  • [3] B. Subramaniam, R. A. Rajewski, and K. Snavely, “Pharmaceutical Processing with Supercritical Carbon Dioxide,” J. Pharm. Sci., vol. 86, no. 8, pp. 885–890, Aug. 1997, doi: 10.1021/JS9700661.
  • [4] P. J. Ginty, M. J. Whitaker, K. M. Shakesheff, and S. M. Howdle, “Drug delivery goes supercritical,” Mater. Today, vol. 8, no. 8 SUPPL., pp. 42–48, 2005, doi: 10.1016/S1369- 7021(05)71036-1.
  • [5] K. Byrappa, S. Ohara, and T. Adschiri, “Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications,” Adv. Drug Deliv. Rev., vol. 60, no. 3, pp. 299– 327, Feb. 2008, doi: 10.1016/J.ADDR.2007.09.001.
  • [6] T. Koga et al., “Low-density polymer thin film formation in supercritical carbon dioxide,” Appl. Phys. Lett., vol. 83, no. 21, pp. 4309–4311, 2003, doi: 10.1063/1.1629799.
  • [7] T. Koga et al., “The Role of Elasticity in the Anomalous Swelling of Polymer Thin Films in Density Fluctuating Supercritical Fluids,” 2003, doi: 10.1021/ma021265w.
  • [8] X.-T. Zhou et al., “Dynamics of polymer thin films in supercritical carbon dioxide You may also like Highly Efficient Aerobic Oxidation of Cyclohexene Catalyzed by Iron(III) Porphyrins in Supercritical Carbon Dioxide Supercritical CO 2 preparation of SBA-15 supported ionic liquid and its adsorption for CO-Review-Supercritical Deposition: A Powerful Technique for Synthesis of Functional Materials for Electrochemical Energy Conversion and Storage.”
  • [9] T. Koga et al., “Neutron reflectivity study of glassy polymer brushes in density fluctuating supercritical carbon dioxide,” J. Polym. Sci. Part B Polym. Phys., vol. 42, no. 17, pp. 3282–3289, Sep. 2004, doi: 10.1002/POLB.20179.
  • [10] J. M. DeSimone, Z. Guan, and C. S. Elsbernd, “Synthesis of fluoropolymers in supercritical carbon dioxide,” Science (80-. )., vol. 257, no. 5072, pp. 945–947, 1992, doi: 10.1126/Science .257.5072.945.
  • [11] N. Jiang et al., “Novel Effects of Compressed CO2 Molecules on Structural Ordering and Charge Transport in Conjugated Poly(3-hexylthiophene) Thin Films,” Langmuir, vol. 32, no. 42, pp. 10851–10860, 2016, doi: 10.1021/acs.langmuir.6b03239.
  • [12] M. Asada, P. Gin, M. K. Endoh, S. K. Satija, T. Taniguchi, and T. Koga, “Directed self-assembly of nanoparticles at the polymer surface by highly compressible supercritical carbon dioxide,” Soft Matter, vol. 7, no. 19, pp. 9231–9238, 2011, doi: 10.1039/c1sm05693j.
  • [13] M. Asada et al., “Melt crystallization/dewetting of ultrathin PEO films via carbon dioxide annealing: The effects of polymer adsorbed layers,” Soft Matter, vol. 10, no. 34, pp. 6392–6403, Sep. 2014, doi: 10.1039/C4SM00683F.
  • [14] Y. Higaki, R. Ishige, and A. Takahara, “Fluoropolymer Surfaces/Interfaces,” Handb. Fluoropolymer Sci. Technol., pp. 433–450, May 2014, doi: 10.1002/9781118850220.CH19.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Fatma Zehra Yalçın 0000-0002-5906-1161

Selda Topçu Şendoğdular 0000-0002-7757-4577

Levent Şendoğdular 0000-0002-6364-0932

Project Number FBA-2018-8320
Publication Date June 1, 2023
Submission Date December 26, 2022
Acceptance Date April 16, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

IEEE F. Z. Yalçın, S. Topçu Şendoğdular, and L. Şendoğdular, “SÜPER KRİTİK CO2’nin P3HT/PCBM ve PVP-AgNP MALZEMELERDE NANOPARTİKÜL DAĞILIMININ KONTROLÜ”, KONJES, vol. 11, no. 2, pp. 543–556, 2023, doi: 10.36306/konjes.1224605.