PRODUCTION OF OXIDE DISPERSION STRENGTHENED INCONEL 718 ALLOYS USING CONVENTIONAL POWDER METALLURGY AND ADDITIVE MANUFACTURING METHODS
Year 2023,
Volume: 11 Issue: 3, 678 - 692, 01.09.2023
Eda Aydoğan Güngör
Abstract
Oxide dispersion strengthened (ODS) Ni-based alloys having a high density of nano-oxides (NOs) (<10 nm) are considered to be good candidates for extreme environments, such as high temperature, radiation, and corrosion. In this study, ODS IN718 alloys have been produced using conventional powder metallurgy (PM) and novel selective laser melting (SLM) additive manufacturing. The effect of processing routes on the microstructure, in particular on the nano-oxide formation and structure has been investigated. It has been found that the powder metallurgy method that consists of compressing followed by sintering at 1250 and 1500 °C results in a nano-granular structure with homogenously distributed fine nano-oxides having a high number density. Similarly, SLM results in a high number density of fine nano-oxides; however, the particles exist in groups with the grains/cells. The nano-oxides are determined to be Y2Ti2O7, Y2TiO5 or YTiO3 and Y-Al-O. The deviation in the lattice parameters of Y2Ti2O7 infers the existence of some Al in the structure. This study sheds light on producing ODS IN718 alloys with high-density nano-oxides using powder metallurgy and additive manufacturing methods.
Supporting Institution
LOREAL UNESCO ve TÜBİTAK
Project Number
TÜBİTAK proje no: 219M500
Thanks
This study is funded by LOREAL UNESCO For Women in Science 2021 Grant and the Scientific and Technological Research Council of Turkey (TUBITAK) under the grant No: 219M500.
References
- H. Zhang, C. Li, Q. Guo, Z. Ma, H. Li, and Y. Liu, "Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants," Scripta Materialia, vol. 164, pp. 66-70, 2019/04/15/ 2019, doi: https://doi.org/10.1016/j.scriptamat.2019.01.041.
- S. Pratheesh Kumar, S. Elangovan, R. Mohanraj, and J. R. Ramakrishna, "A review on properties of Inconel 625 and Inconel 718 fabricated using direct energy deposition," Materials Today: Proceedings, vol. 46, pp. 7892-7906, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.matpr.2021.02.566.
- E. Aydogan et al., "Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys," Acta Materialia, vol. 134, pp. 116-127, 2017/08/01/ 2017, doi: https://doi.org/10.1016/j.actamat.2017.05.053.
- E. Aydogan, O. El-Atwani, S. Takajo, S. C. Vogel, and S. A. Maloy, "High temperature microstructural stability and recrystallization mechanisms in 14YWT alloys," Acta Materialia, vol. 148, pp. 467-481, 2018/04/15/ 2018, doi: https://doi.org/10.1016/j.actamat.2018.02.006.
- G. R. Odette, "Recent Progress in Developing and Qualifying Nanostructured Ferritic Alloys for Advanced Fission and Fusion Applications," JOM, Article in Press 2014, doi: 10.1007/s11837-014-1207-5.
- G. R. Odette, M. J. Alinger, and B. D. Wirth, "Recent Developments in Irradiation-Resistant Steels," Annual Review of Materials Research, vol. 38, no. 1, pp. 471-503, 2008, doi: doi:10.1146/annurev.matsci.38.060407.130315.
- T. Chen et al., "Microstructural changes and void swelling of a 12Cr ODS ferritic-martensitic alloy after high-dpa self-ion irradiation," Journal of Nuclear Materials, Article vol. 467, pp. 42-49, 2015, Art no. 49325, doi: 10.1016/j.jnucmat.2015.09.016.
- Y. Wu, E. M. Haney, N. J. Cunningham, and G. R. Odette, "Transmission electron microscopy characterization of the nanofeatures in nanostructured ferritic alloy MA957," Acta Materialia, vol. 60, no. 8, pp. 3456-3468, 5// 2012, doi: http://dx.doi.org/10.1016/j.actamat.2012.03.012.
- Z. Zhang, T. A. Saleh, S. A. Maloy, and O. Anderoglu, "Microstructure evolution in MA956 neutron irradiated in ATR at 328 °C to 4.36 dpa," Journal of Nuclear Materials, vol. 533, p. 152094, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.jnucmat.2020.152094.
- C. W. Park, J. M. Byun, W. J. Choi, S. Y. Lee, and Y. D. Kim, "Improvement of high temperature mechanical properties of Ni-based oxide dispersion strengthened alloys by preferential formation of Y-Ti-O complex oxide," Materials Science and Engineering: A, vol. 740-741, pp. 363-367, 2019/01/07/ 2019, doi: https://doi.org/10.1016/j.msea.2018.10.004.
- N. J. Cunningham et al., "Effect of bulk oxygen on 14YWT nanostructured ferritic alloys," Journal of Nuclear Materials, vol. 444, no. 1, pp. 35-38, 2014/01/01/ 2014, doi: https://doi.org/10.1016/j.jnucmat.2013.09.013.
- D. T. Hoelzer, J. Bentley, M. A. Sokolov, M. K. Miller, G. R. Odette, and M. J. Alinger, "Influence of particle dispersions on the high-temperature strength of ferritic alloys," Journal of Nuclear Materials, vol. 367-370, pp. 166-172, 2007/08/01/ 2007, doi: https://doi.org/10.1016/j.jnucmat.2007.03.151.
- S. Ukai and M. Fujiwara, "Perspective of ODS alloys application in nuclear environments," Journal of Nuclear Materials, vol. 307-311, pp. 749-757, 2002/12/01/ 2002, doi: https://doi.org/10.1016/S0022-3115(02)01043-7.
- M. K. Miller, D. T. Hoelzer, E. A. Kenik, and K. F. Russell, "Stability of ferritic MA/ODS alloys at high temperatures," Intermetallics, vol. 13, no. 3, pp. 387-392, 2005/03/01/ 2005, doi: https://doi.org/10.1016/j.intermet.2004.07.036.
- L. Yu et al., "Effects of Al content on microstructure and tensile properties of Ni-based ODS superalloys," Journal of Alloys and Compounds, vol. 941, p. 168965, 2023/04/25/ 2023, doi: https://doi.org/10.1016/j.jallcom.2023.168965.
- E. Hosseini and V. A. Popovich, "A review of mechanical properties of additively manufactured Inconel 718," Additive Manufacturing, vol. 30, p. 100877, 2019/12/01/ 2019, doi: https://doi.org/10.1016/j.addma.2019.100877.
- M. M. Attallah, R. Jennings, X. Wang, and L. N. Carter, "Additive manufacturing of Ni-based superalloys: The outstanding issues," MRS Bulletin, vol. 41, no. 10, pp. 758-764, 2016/10/01 2016, doi: 10.1557/mrs.2016.211.
- M. Ni et al., "Microstructure and mechanical properties of additive manufactured Inconel 718 alloy strengthened by oxide dispersion with 0.3 wt% Sc addition," Journal of Alloys and Compounds, vol. 918, p. 165763, 2022/10/15/ 2022, doi: https://doi.org/10.1016/j.jallcom.2022.165763.
- J. P. Oliveira, A. D. LaLonde, and J. Ma, "Processing parameters in laser powder bed fusion metal additive manufacturing," Materials & Design, vol. 193, p. 108762, 2020/08/01/ 2020, doi: https://doi.org/10.1016/j.matdes.2020.108762.
- M. Ni, S. Liu, C. Chen, R. Li, X. Zhang, and K. Zhou, "Effect of heat treatment on the microstructural evolution of a precipitation-hardened superalloy produced by selective laser melting," Materials Science and Engineering: A, vol. 748, pp. 275-285, 2019/03/04/ 2019, doi: https://doi.org/10.1016/j.msea.2019.01.109.
- V. A. Popovich, E. V. Borisov, A. A. Popovich, V. S. Sufiiarov, D. V. Masaylo, and L. Alzina, "Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting," Materials & Design, vol. 131, pp. 12-22, 2017/10/05/ 2017, doi: https://doi.org/10.1016/j.matdes.2017.05.065.
- W. Tillmann, C. Schaak, J. Nellesen, M. Schaper, M. E. Aydinöz, and K. P. Hoyer, "Hot isostatic pressing of IN718 components manufactured by selective laser melting," Additive Manufacturing, vol. 13, pp. 93-102, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.addma.2016.11.006.
- J. Deng, C. Chen, X. Liu, Y. Li, K. Zhou, and S. Guo, "A high-strength heat-resistant Al−5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting," Scripta Materialia, vol. 203, p. 114034, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.scriptamat.2021.114034.
- D.-R. Liu, S. Wang, and W. Yan, "Grain structure evolution in transition-mode melting in direct energy deposition," Materials & Design, vol. 194, p. 108919, 2020/09/01/ 2020, doi: https://doi.org/10.1016/j.matdes.2020.108919.
- S. Xu et al., "Combination of back stress strengthening and Orowan strengthening in bimodal structured Fe–9Cr–Al ODS steel with high Al addition," Materials Science and Engineering: A, vol. 739, pp. 45-52, 2019/01/02/ 2019, doi: https://doi.org/10.1016/j.msea.2018.09.111.
- S. Ukai et al., "Directional recrystallization by zone annealing in a Ni-based ODS superalloy," Journal of Alloys and Compounds, vol. 744, pp. 204-210, 2018/05/05/ 2018, doi: https://doi.org/10.1016/j.jallcom.2018.01.406.
- A. Ozsoy, E. Aydogan, and A. F. Dericioglu, "Selective laser melting of Nano-TiN reinforced 17-4 PH stainless steel: Densification, microstructure and mechanical properties," Materials Science and Engineering: A, vol. 836, p. 142574, 2022/03/02/ 2022, doi: https://doi.org/10.1016/j.msea.2021.142574.
- E. Vasquez et al., "Elaboration of oxide dispersion strengthened Fe-14Cr stainless steel by selective laser melting," Journal of Materials Processing Technology, vol. 267, pp. 403-413, 2019/05/01/ 2019, doi: https://doi.org/10.1016/j.jmatprotec.2018.12.034.
- C. Guo, Z. Yu, C. Liu, X. Li, Q. Zhu, and R. Mark Ward, "Effects of Y2O3 nanoparticles on the high-temperature oxidation behavior of IN738LC manufactured by laser powder bed fusion," Corrosion Science, vol. 171, p. 108715, 2020/07/15/ 2020, doi: https://doi.org/10.1016/j.corsci.2020.108715.
- R. Xu et al., "Microstructure and mechanical properties of in-situ oxide-dispersion-strengthened NiCrFeY alloy produced by laser powder bed fusion," Advanced Powder Materials, vol. 1, no. 4, p. 100056, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.apmate.2022.100056.
- J. U. Rakhmonov, C. Kenel, A. De Luca, C. Leinenbach, and D. C. Dunand, "Effect of Y2O3 dispersoids on microstructure and creep properties of Hastelloy X processed by laser powder-bed fusion," Additive Manufacturing Letters, vol. 3, p. 100069, 2022/12/01/ 2022, doi: https://doi.org/10.1016/j.addlet.2022.100069.
- E. Aydogan et al., "In-situ radiation response of additively manufactured modified Inconel 718 alloys," Additive Manufacturing, vol. 51, p. 102601, 2022/03/01/ 2022, doi: https://doi.org/10.1016/j.addma.2022.102601.
- M. Yesim Yalcin, D. Bora, and E. Aydogan, "Development and additive manufacturing of oxide dispersion strengthened inconel 718: Thermochemical and experimental studies," Journal of Alloys and Compounds, vol. 914, p. 165193, 2022/09/05/ 2022, doi: https://doi.org/10.1016/j.jallcom.2022.165193.
- B. Y. v. B. E. U. Karakılınç "Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması ve Partikül İmalat Yöntemleri," Politeknik Dergisi, vol. 22, no. 4, pp. 801-810, 2019, doi: 10.2339/politeknik.423707.
- T. Chen et al., "Temperature dependent dispersoid stability in ion-irradiated ferritic-martensitic dual-phase oxide-dispersion-strengthened alloy: Coherent interfaces vs. incoherent interfaces," Acta Materialia, vol. 116, pp. 29-42, 2016/09/01/ 2016, doi: https://doi.org/10.1016/j.actamat.2016.05.042.
- Y. Miao et al., "The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel," Materials Characterization, vol. 101, pp. 136-143, 2015/03/01/ 2015, doi: https://doi.org/10.1016/j.matchar.2015.01.015.
- M. Mujahid and J. W. Martin, "The effect of oxide particle coherency on Zener pinning in ODS superalloys," Journal of Materials Science Letters, vol. 13, no. 3, pp. 153-155, 1994/01/01 1994, doi: 10.1007/BF00278146.
- L. F. He et al., "Mechanical properties of Y2Ti2O7," Scripta Materialia, vol. 64, no. 6, pp. 548-551, 2011/03/01/ 2011, doi: https://doi.org/10.1016/j.scriptamat.2010.11.042.
- K. Mo et al., "Synchrotron study on load partitioning between ferrite/martensite and nanoparticles of a 9Cr ODS steel," Journal of Nuclear Materials, vol. 455, no. 1, pp. 376-381, 2014/12/01/ 2014, doi: https://doi.org/10.1016/j.jnucmat.2014.06.060.
- G. Moskal et al., "Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel," Surface and Coatings Technology, vol. 387, p. 125317, 2020/04/15/ 2020, doi: https://doi.org/10.1016/j.surfcoat.2019.125317.
- N. Mattern, M. Zinkevich, W. Löser, G. Behr, and J. Acker, "Experimental and thermodynamic assessment of the Nb-Ni-Y system," Journal of Phase Equilibria and Diffusion, Article vol. 29, no. 2, pp. 141-155, 2008, doi: 10.1007/s11669-007-9243-2.
- Y. Zhou, M. Hu, P. Yan, X. Shi, X. Chong, and J. Feng, "A first-principles calculation of structural, mechanical, thermodynamic and electronic properties of binary Ni-Y compounds," RSC Advances, Article vol. 8, no. 72, pp. 41575-41586, 2018, doi: 10.1039/c8ra09383k.
- S. K. Sinha, A. Dasgupta, M. Sivakumar, C. Ghosh, and S. Raju, "Unraveling the Complexity of Nano-Dispersoids in the Oxide Dispersion Strengthened Alloy 617," Microscopy and Microanalysis, vol. 28, no. 5, pp. 1463-1471, 2022, doi: 10.1017/S143192762200071X.
- M. Sivakumar, S. K. Sinha, A. Dasgupta, and S. M. Shaikh, "Structure and Texture of Oxide Dispersion Strengthened Alloy 617 for Very High Temperature Applications," Metallurgical and Materials Transactions A, vol. 52, no. 11, pp. 4974-4986, 2021/11/01 2021, doi: 10.1007/s11661-021-06442.
Year 2023,
Volume: 11 Issue: 3, 678 - 692, 01.09.2023
Eda Aydoğan Güngör
Project Number
TÜBİTAK proje no: 219M500
References
- H. Zhang, C. Li, Q. Guo, Z. Ma, H. Li, and Y. Liu, "Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants," Scripta Materialia, vol. 164, pp. 66-70, 2019/04/15/ 2019, doi: https://doi.org/10.1016/j.scriptamat.2019.01.041.
- S. Pratheesh Kumar, S. Elangovan, R. Mohanraj, and J. R. Ramakrishna, "A review on properties of Inconel 625 and Inconel 718 fabricated using direct energy deposition," Materials Today: Proceedings, vol. 46, pp. 7892-7906, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.matpr.2021.02.566.
- E. Aydogan et al., "Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys," Acta Materialia, vol. 134, pp. 116-127, 2017/08/01/ 2017, doi: https://doi.org/10.1016/j.actamat.2017.05.053.
- E. Aydogan, O. El-Atwani, S. Takajo, S. C. Vogel, and S. A. Maloy, "High temperature microstructural stability and recrystallization mechanisms in 14YWT alloys," Acta Materialia, vol. 148, pp. 467-481, 2018/04/15/ 2018, doi: https://doi.org/10.1016/j.actamat.2018.02.006.
- G. R. Odette, "Recent Progress in Developing and Qualifying Nanostructured Ferritic Alloys for Advanced Fission and Fusion Applications," JOM, Article in Press 2014, doi: 10.1007/s11837-014-1207-5.
- G. R. Odette, M. J. Alinger, and B. D. Wirth, "Recent Developments in Irradiation-Resistant Steels," Annual Review of Materials Research, vol. 38, no. 1, pp. 471-503, 2008, doi: doi:10.1146/annurev.matsci.38.060407.130315.
- T. Chen et al., "Microstructural changes and void swelling of a 12Cr ODS ferritic-martensitic alloy after high-dpa self-ion irradiation," Journal of Nuclear Materials, Article vol. 467, pp. 42-49, 2015, Art no. 49325, doi: 10.1016/j.jnucmat.2015.09.016.
- Y. Wu, E. M. Haney, N. J. Cunningham, and G. R. Odette, "Transmission electron microscopy characterization of the nanofeatures in nanostructured ferritic alloy MA957," Acta Materialia, vol. 60, no. 8, pp. 3456-3468, 5// 2012, doi: http://dx.doi.org/10.1016/j.actamat.2012.03.012.
- Z. Zhang, T. A. Saleh, S. A. Maloy, and O. Anderoglu, "Microstructure evolution in MA956 neutron irradiated in ATR at 328 °C to 4.36 dpa," Journal of Nuclear Materials, vol. 533, p. 152094, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.jnucmat.2020.152094.
- C. W. Park, J. M. Byun, W. J. Choi, S. Y. Lee, and Y. D. Kim, "Improvement of high temperature mechanical properties of Ni-based oxide dispersion strengthened alloys by preferential formation of Y-Ti-O complex oxide," Materials Science and Engineering: A, vol. 740-741, pp. 363-367, 2019/01/07/ 2019, doi: https://doi.org/10.1016/j.msea.2018.10.004.
- N. J. Cunningham et al., "Effect of bulk oxygen on 14YWT nanostructured ferritic alloys," Journal of Nuclear Materials, vol. 444, no. 1, pp. 35-38, 2014/01/01/ 2014, doi: https://doi.org/10.1016/j.jnucmat.2013.09.013.
- D. T. Hoelzer, J. Bentley, M. A. Sokolov, M. K. Miller, G. R. Odette, and M. J. Alinger, "Influence of particle dispersions on the high-temperature strength of ferritic alloys," Journal of Nuclear Materials, vol. 367-370, pp. 166-172, 2007/08/01/ 2007, doi: https://doi.org/10.1016/j.jnucmat.2007.03.151.
- S. Ukai and M. Fujiwara, "Perspective of ODS alloys application in nuclear environments," Journal of Nuclear Materials, vol. 307-311, pp. 749-757, 2002/12/01/ 2002, doi: https://doi.org/10.1016/S0022-3115(02)01043-7.
- M. K. Miller, D. T. Hoelzer, E. A. Kenik, and K. F. Russell, "Stability of ferritic MA/ODS alloys at high temperatures," Intermetallics, vol. 13, no. 3, pp. 387-392, 2005/03/01/ 2005, doi: https://doi.org/10.1016/j.intermet.2004.07.036.
- L. Yu et al., "Effects of Al content on microstructure and tensile properties of Ni-based ODS superalloys," Journal of Alloys and Compounds, vol. 941, p. 168965, 2023/04/25/ 2023, doi: https://doi.org/10.1016/j.jallcom.2023.168965.
- E. Hosseini and V. A. Popovich, "A review of mechanical properties of additively manufactured Inconel 718," Additive Manufacturing, vol. 30, p. 100877, 2019/12/01/ 2019, doi: https://doi.org/10.1016/j.addma.2019.100877.
- M. M. Attallah, R. Jennings, X. Wang, and L. N. Carter, "Additive manufacturing of Ni-based superalloys: The outstanding issues," MRS Bulletin, vol. 41, no. 10, pp. 758-764, 2016/10/01 2016, doi: 10.1557/mrs.2016.211.
- M. Ni et al., "Microstructure and mechanical properties of additive manufactured Inconel 718 alloy strengthened by oxide dispersion with 0.3 wt% Sc addition," Journal of Alloys and Compounds, vol. 918, p. 165763, 2022/10/15/ 2022, doi: https://doi.org/10.1016/j.jallcom.2022.165763.
- J. P. Oliveira, A. D. LaLonde, and J. Ma, "Processing parameters in laser powder bed fusion metal additive manufacturing," Materials & Design, vol. 193, p. 108762, 2020/08/01/ 2020, doi: https://doi.org/10.1016/j.matdes.2020.108762.
- M. Ni, S. Liu, C. Chen, R. Li, X. Zhang, and K. Zhou, "Effect of heat treatment on the microstructural evolution of a precipitation-hardened superalloy produced by selective laser melting," Materials Science and Engineering: A, vol. 748, pp. 275-285, 2019/03/04/ 2019, doi: https://doi.org/10.1016/j.msea.2019.01.109.
- V. A. Popovich, E. V. Borisov, A. A. Popovich, V. S. Sufiiarov, D. V. Masaylo, and L. Alzina, "Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting," Materials & Design, vol. 131, pp. 12-22, 2017/10/05/ 2017, doi: https://doi.org/10.1016/j.matdes.2017.05.065.
- W. Tillmann, C. Schaak, J. Nellesen, M. Schaper, M. E. Aydinöz, and K. P. Hoyer, "Hot isostatic pressing of IN718 components manufactured by selective laser melting," Additive Manufacturing, vol. 13, pp. 93-102, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.addma.2016.11.006.
- J. Deng, C. Chen, X. Liu, Y. Li, K. Zhou, and S. Guo, "A high-strength heat-resistant Al−5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting," Scripta Materialia, vol. 203, p. 114034, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.scriptamat.2021.114034.
- D.-R. Liu, S. Wang, and W. Yan, "Grain structure evolution in transition-mode melting in direct energy deposition," Materials & Design, vol. 194, p. 108919, 2020/09/01/ 2020, doi: https://doi.org/10.1016/j.matdes.2020.108919.
- S. Xu et al., "Combination of back stress strengthening and Orowan strengthening in bimodal structured Fe–9Cr–Al ODS steel with high Al addition," Materials Science and Engineering: A, vol. 739, pp. 45-52, 2019/01/02/ 2019, doi: https://doi.org/10.1016/j.msea.2018.09.111.
- S. Ukai et al., "Directional recrystallization by zone annealing in a Ni-based ODS superalloy," Journal of Alloys and Compounds, vol. 744, pp. 204-210, 2018/05/05/ 2018, doi: https://doi.org/10.1016/j.jallcom.2018.01.406.
- A. Ozsoy, E. Aydogan, and A. F. Dericioglu, "Selective laser melting of Nano-TiN reinforced 17-4 PH stainless steel: Densification, microstructure and mechanical properties," Materials Science and Engineering: A, vol. 836, p. 142574, 2022/03/02/ 2022, doi: https://doi.org/10.1016/j.msea.2021.142574.
- E. Vasquez et al., "Elaboration of oxide dispersion strengthened Fe-14Cr stainless steel by selective laser melting," Journal of Materials Processing Technology, vol. 267, pp. 403-413, 2019/05/01/ 2019, doi: https://doi.org/10.1016/j.jmatprotec.2018.12.034.
- C. Guo, Z. Yu, C. Liu, X. Li, Q. Zhu, and R. Mark Ward, "Effects of Y2O3 nanoparticles on the high-temperature oxidation behavior of IN738LC manufactured by laser powder bed fusion," Corrosion Science, vol. 171, p. 108715, 2020/07/15/ 2020, doi: https://doi.org/10.1016/j.corsci.2020.108715.
- R. Xu et al., "Microstructure and mechanical properties of in-situ oxide-dispersion-strengthened NiCrFeY alloy produced by laser powder bed fusion," Advanced Powder Materials, vol. 1, no. 4, p. 100056, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.apmate.2022.100056.
- J. U. Rakhmonov, C. Kenel, A. De Luca, C. Leinenbach, and D. C. Dunand, "Effect of Y2O3 dispersoids on microstructure and creep properties of Hastelloy X processed by laser powder-bed fusion," Additive Manufacturing Letters, vol. 3, p. 100069, 2022/12/01/ 2022, doi: https://doi.org/10.1016/j.addlet.2022.100069.
- E. Aydogan et al., "In-situ radiation response of additively manufactured modified Inconel 718 alloys," Additive Manufacturing, vol. 51, p. 102601, 2022/03/01/ 2022, doi: https://doi.org/10.1016/j.addma.2022.102601.
- M. Yesim Yalcin, D. Bora, and E. Aydogan, "Development and additive manufacturing of oxide dispersion strengthened inconel 718: Thermochemical and experimental studies," Journal of Alloys and Compounds, vol. 914, p. 165193, 2022/09/05/ 2022, doi: https://doi.org/10.1016/j.jallcom.2022.165193.
- B. Y. v. B. E. U. Karakılınç "Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması ve Partikül İmalat Yöntemleri," Politeknik Dergisi, vol. 22, no. 4, pp. 801-810, 2019, doi: 10.2339/politeknik.423707.
- T. Chen et al., "Temperature dependent dispersoid stability in ion-irradiated ferritic-martensitic dual-phase oxide-dispersion-strengthened alloy: Coherent interfaces vs. incoherent interfaces," Acta Materialia, vol. 116, pp. 29-42, 2016/09/01/ 2016, doi: https://doi.org/10.1016/j.actamat.2016.05.042.
- Y. Miao et al., "The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel," Materials Characterization, vol. 101, pp. 136-143, 2015/03/01/ 2015, doi: https://doi.org/10.1016/j.matchar.2015.01.015.
- M. Mujahid and J. W. Martin, "The effect of oxide particle coherency on Zener pinning in ODS superalloys," Journal of Materials Science Letters, vol. 13, no. 3, pp. 153-155, 1994/01/01 1994, doi: 10.1007/BF00278146.
- L. F. He et al., "Mechanical properties of Y2Ti2O7," Scripta Materialia, vol. 64, no. 6, pp. 548-551, 2011/03/01/ 2011, doi: https://doi.org/10.1016/j.scriptamat.2010.11.042.
- K. Mo et al., "Synchrotron study on load partitioning between ferrite/martensite and nanoparticles of a 9Cr ODS steel," Journal of Nuclear Materials, vol. 455, no. 1, pp. 376-381, 2014/12/01/ 2014, doi: https://doi.org/10.1016/j.jnucmat.2014.06.060.
- G. Moskal et al., "Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel," Surface and Coatings Technology, vol. 387, p. 125317, 2020/04/15/ 2020, doi: https://doi.org/10.1016/j.surfcoat.2019.125317.
- N. Mattern, M. Zinkevich, W. Löser, G. Behr, and J. Acker, "Experimental and thermodynamic assessment of the Nb-Ni-Y system," Journal of Phase Equilibria and Diffusion, Article vol. 29, no. 2, pp. 141-155, 2008, doi: 10.1007/s11669-007-9243-2.
- Y. Zhou, M. Hu, P. Yan, X. Shi, X. Chong, and J. Feng, "A first-principles calculation of structural, mechanical, thermodynamic and electronic properties of binary Ni-Y compounds," RSC Advances, Article vol. 8, no. 72, pp. 41575-41586, 2018, doi: 10.1039/c8ra09383k.
- S. K. Sinha, A. Dasgupta, M. Sivakumar, C. Ghosh, and S. Raju, "Unraveling the Complexity of Nano-Dispersoids in the Oxide Dispersion Strengthened Alloy 617," Microscopy and Microanalysis, vol. 28, no. 5, pp. 1463-1471, 2022, doi: 10.1017/S143192762200071X.
- M. Sivakumar, S. K. Sinha, A. Dasgupta, and S. M. Shaikh, "Structure and Texture of Oxide Dispersion Strengthened Alloy 617 for Very High Temperature Applications," Metallurgical and Materials Transactions A, vol. 52, no. 11, pp. 4974-4986, 2021/11/01 2021, doi: 10.1007/s11661-021-06442.