Review
BibTex RIS Cite

THE EFFECT OF CUTTING FORCES ON BONE RELATED OPERATIONAL PROCESSES: A LITERATURE REVIEW

Year 2024, Volume: 12 Issue: 3, 801 - 821, 01.09.2024
https://doi.org/10.36306/konjes.1430115

Abstract

Cutting mechanics must be known in terms of solving the mechanistic problems to be encountered as a result of the operational processes on the bone. In today's applications, operational procedures such as milling, drilling, cutting and screwing can be performed on the bone as a surgical procedure. The uncontrollable cutting forces that occur as a combination of the microstructure of the bone and the geometric features of the cutting tools and the resulting localized heat (fracture and necrosis) may cause bone damage. The fracture of the cutting tool or the cut bone due to the cutting force depends on the intensity and direction of the forces applied during the operation. In this study, a review of the studies in the literature on what the factors causing bone damage and their effects are reduced. In addition, the information given in this study will be useful as a one-stop document for technicians, engineers and researchers who need information on tool design, cutting force measurements in bone processing operations (in surgical applications such as milling, drilling, cutting, etc.) of cutting forces.

References

  • S. Neseli, S. Tasdemir, S. Yaldız, “Prediction of surface roughness on turning with artificial neural network,” Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University, vol. 22, no. 3, pp.65-75, 2009, https://dergipark.org.tr/en/pub/ogummf/issue/30159/325473.
  • B. Bakır, “Effects of geometry carbur end mill on machinability for CNC machines,” Master Thesis, Marmara University Institute of Science and Technology, İstanbul, 2005.
  • E. Yılmaz, “Determining the appropriate tool selection by comparing experimental cutting performance of tool holders produced by two different methods from tool steel (AISI 4340),” Master Thesis, Marmara University Institute of Science and Technology, İstanbul, pp. 2, 2019.
  • M. P. Groover, “Principles of modern manufacturing,” J.Wiley & Sons, 2011.
  • A. Kurt, S. Sürücüler, A. Kirik, “Developing a mathematical model for the cutting forces prediction,” Journal of Polytechnic, vol. 13, no. 1, pp. 15-20, 2010, https://dergipark.org.tr/en/pub/ politeknik/issue/33052/367852.
  • B. Yılmaz, “Design of the dynamic chip breaker with pneumatic driven and investigation of the effects on machining parameters,” Master Thesis, Gazi University Institute of Science and Technology, Ankara, pp. 10-50, 2016.
  • M. C. Çakır, “Modern machining methods,” Dora Yayıncılık, 2010.
  • İ. Çiftçi, H. Gökçe, “Optimization of cutting tool and cutting parameters in machining of molybdenum alloys through the Taguchi Method,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 34, no. 1, pp. 201-213, 2019, Doi:10.17341/gazimmfd.416482.
  • M. Aydın, U. Köklü, “A study of ball-end milling forces by finite element model with Lagrangian boundary of orthogonal cutting operation,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 33, no. 2, pp. 517-527, 2018, https://doi.org/10.17341/gazimmfd.416360.
  • A. R. Eriksson, T. Albrektsson, “The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber,” Journal of Oral and Maxillofaccial Surgery, vol. 42, no. 11, pp. 705-711, 1984, https://doi.org/10.1016/0278-2391(84)90417-8.
  • J. Christie, “Surgical heat injury of bone,” Injury, vol. 13, no. 3, pp. 188-190, 1981, https://doi.org/ 10.1016/0020-1383(81)90236-9.
  • F. G. Pallan, “Histological changes in bone after insertion of skeletal fixation pins,” Journal of Oral Surgery, Anesthesia, And Hospital Dental Service, vol. 18, pp. 400-408, 1960, PMID: 14429940.
  • H. C. Thompson, “Effect of drilling into bone,” Journal of Oral Surgery, Anesthesia, And Hospital Dental Service, vol. 16, no. 1, pp. 22-30, 1958, PMID: 13492103.
  • L. S. Matthews, C. Hirsch, “Temperatures measured in human cortical bone when drilling,” The Journal of Bone and Joint Surgery, vol. 54, no. 2, pp. 297-308, 1972, doi:10.2106/00004623-197254020-00008.
  • S. T. Larsen, L. Ryd, “Temperature elevation during knee arthroplasty,” Acta Orthopaedica Scandinavica, vol. 60, no. 4, pp. 439-442, 1989, https://doi.org/10.3109/17453678909149314.
  • W. Bonfield, C. H. Li, “The temperature dependence of the deformation of bone,” Journal of Biomechanics, vol. 1, no. 4, pp. 323-329, 1968, https://doi.org/10.1016/0021-9290(68)90026-2.
  • B. Noble, “Bone microdamage and cell apoptosis,” European Cells and Materials, vol. 6, pp. 46-56, 2003, doi:10.22203/eCM.v006a05.
  • H. K. Parsa, “An investigation into the temperature distribution resulting from cutting of compact bone using a reciprocating bone saw,” Master Thesis, Department of Mechanical and Electronic Engineering Institute of Technology, Sligo, pp. 26-27, 2006.
  • R. Bielby, E. Jones, D. McGonagle, “The role of mesenchymal stem cells in maintenance and repair of bone,” Injury, vol. 38, no. 1, pp. 26-32, 2007, https://doi.org/10.1016/j.injury.2007.02.007.
  • C. Baycu, “Histology-Unit 7, Open Education Faculty Publications, Anadolu University,” no. 480, pp. 124-144, Eskisehir, 1995.
  • T. Udiljak, D. Ciglar, S. Skoric, “Investigation into bone drilling and thermal bone necrosis,” Advances in Production Engineering Management, vol. 2, no. 3, pp. 103-112, 2007.
  • U. Kneser, D. J. Schaefer, E. Polykandriotis, R. E. Horch, “Tissue engineering of bone: the reconstructive surgeon’s point of view,” Journal of Cellular and Molecular Medicine, vol. 10, no. 1, pp. 7-19, 2006, https://doi.org/10.1111/j.1582-4934.2006.tb00287.x.
  • H. Ogura, K. Ohya, “Physiology and pharmacology of hard tissues-effect of chemicals on the formation and the resorption mechanism of tooth and bone,” Nihon yakurigaku zasshi, vol. 105, no. 5, pp. 305-318, 1995, doi: 10.1254/fpj.105.305.
  • K. W. S. Ashwell, “Concise body atlas: the compact guide to the human body,” London: Quad Quarto Publishing Group, 2017.
  • A. G. Robling, A. B. Castillo, C. H. Turner, “Biomechanical and molecular regulation of bone remodeling,” Annual Review of Biomedical Engineering, vol. 8, pp. 455-498, 2006, https://doi.org/10. 1146/annurev.bioeng.8.061505.095721.
  • G. J. Tortora, B. Derrickson, “Principles of Anatomy and Physiology,” Hoboken: Wiley, pp. 1146, 2017.
  • J. A. Buckwalter, M. J. Glimcher, R. R. Cooper, R. Recker, “Bone biology: Structure, blood supply, cells, matrix, and mineralization,” Journal of bone and joint surgery, vol. 77, pp. 1256-1275, 1995a, https://doi.org/10.2106/00004623-199508000-00019.
  • M. F. A. Akhbar, A. W. Sulong, “Surgical drill bit design and thermomechanical damage in bone drilling: A review,” Annals of Biomedical Engineering Society, vol. 49, pp. 29-56, 2021, https://doi.org/10.1007/s10439-020-02600-2.
  • İ. V. Odar, “Anatomy Textbook 1,” Hacettepe-Taş Kitapçılık Ltd. Şti., pp. 565, Ankara, 1986.
  • L. Bayliss, D. J. Mahoney, P. Monk, “Normal bone physiology, remodeling and its hormonal regulation,” Surgery, vol. 30, no. 2, pp. 47-53, 2012.
  • J. A. Buckwalter, M. J. Glimcher, R. R. Cooper, R. Recker, “Bone biology,” J Bone Joint Surg Am., vol. 77, pp. 1256-1275, 2010.
  • B. Clarke, “Normal bone anatomy and physiology,” Clinical Journal of the American Society of Nephrology, vol. 3, pp. 131-139, 2008, doi: 10.2215/CJN.04151206.
  • U. Kini, B. N. Nandeesh, “Physiology of bone formation, remodeling, and metabolism,” Radionuclide and Hybrid Bone Imaging, pp. 29-57, 2012, doi:10.1007/978-3-642-02400-9_2.
  • C. E. Metzger, D. B. Burr, M. R. Allen, “Anatomy and structural considerations,” Encyclopedia of Bone Biology, pp. 218–232, 2020, https://doi.org/10.1016/B978-0-12-801238-3.62234-1.
  • O. R. William, “Functional anatomy and physiology of domestic animals. Fourth edition,” pp. 179-198, 2009.
  • S. C. Cowin, “Bone mechanics handbook, second edition,” Taylor & Francis, pp. 8,15, 2001.
  • J. M. Bassert, T. Colville, “Clinical anatomy and physiology for veterinary technicians,” pp. 95-118, 2002.
  • L. E. Lanyon, “Osteocytes, strain detection, bone modeling and remodeling,” Calcif Tissue Int. vol. 53, pp. 102-107, 1993, https://doi.org/10.1007/BF01673415.
  • S. Standring, “Gray’s anatomy: The anatomical basis of clinical practice. Forty-first edition,” Elsevier press. pp. 81-123, 2016.
  • Leslie P. Gartner, “Color Atlas and Text of Histology Seventh Edition,” Wolters Kluwer, 2018.
  • S. Li, A. Zahedi, V. Silberschmidt, “Numerical simulation of bone cutting: hybrid SPH-FE approach. Numerical methods and advanced simulation in biomechanics and biological Processes,” Elsevier, Amsterdam, Netherlands, pp. 187-201, 2018, https://doi.org/10.1016/B978-0-12-811718-7.00010-1.
  • M. E. Launey, P. Y. Chen, J. McKittrick, R. O. Ritchie, “Mechanistic aspects of the fracture toughness of elk antler bone,” Acta Biomater., vol. 6, no. 4, pp. 1505-1514, 2010, https://doi.org/10. 1016/j.actbio.2009.11.026.
  • V. Ebacher, P. Guy, T. R. Oxland, R. Wang, “Sub-lamellar microcracking and roles of canaliculi in human cortical bone,” Acta Biomaterialia, vol. 8, no. 3, pp. 1093-1100, 2012, https://doi.org/10.1016 /j.actbio.2011.11.013.
  • J. D. Currey, “Mechanical properties and adaptations of some less familiar bony tissues,“ J. Mech. Behav. Biomed. Mater., vol. 3, no. 5, pp. 357-372, 2010, https://doi.org/10.1016/j.jmbbm.2010.03.002.
  • A. Molinari, R. Cheriguene, H. Miguelez, “Contact variables and thermal effects at the tool chip interface in orthogonal cutting,” International Journal of Solids and Structures, vol. 49, no. 26, pp. 3774-3796, 2012, https://doi.org/10.1016/j.ijsolstr.2012.08.013.
  • X. Soldani, C. Santiuste, A. Muñoz-Sánchez, H. Miguélez, “Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites,” Composites Part A: Applied science and Manufacturing, vol. 42, no. 9, pp. 1205-1216, 2011, https://doi.org/10.1016/ j.compositesa.2011.04.023.
  • M. E. Merchant, “Basic mechanics of the metal cutting process,” J. Appl. Mech., vol. 11 (A), pp. 168-175, 1944, https://doi.org/10.1115/1.4009380.
  • M. Marco, M. Rodríguez-Millán, C. Santiuste, E. Giner, M. H. Miguélez, “A review on recent advances in numerical modelling of bone cutting,” J. Mech. Behav. Biomed. Mater., vol. 44, pp. 179-201, 2015, https://doi.org/10.1016/j.jmbbm.2014.12.006.
  • D. A. Stephenson, J. S. Agapiou, “Metal cutting theory and practice, third edition,” CRC Press Taylor & Francis Group LLC, Boca Raton, 2016.
  • C. H. Jacobs, M. H. Pope, J. T. Berry, F. Hoaglund, “A study of the bone machining process- orthogonal cutting,” Journal of Biomechanics, vol. 7, no. 2, pp. 131-136, 1974, https://doi.org/10.1016 /0021-9290(74)90051-7.
  • H. Wang, U. Satake, T. Enomoto, “Serrated chip formation mechanism in orthogonal cutting of cortical bone at small depths of cut,” Journal of Materials Processing Technology, vol. 319, 118097, 2023, https://doi.org/10.1016/j.jmatprotec.2023.118097.
  • W. Bai, L. Shu, R. Sun, J. Xu, V. V. Silberschmidt, N. Sugita, “Mechanism of material removal in orthogonal cutting of cortical bone,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 104, 103618, 2020, https://doi.org/10.1016/j.jmbbm.2020.103618.
  • M. Qasemi, V. Tahmasbi, M. M. Sheikhi, M. Zolfaghari, “An effect of osteon orientation in end milling operation of cortical bone based on FEM and experiment,” Journal of Manufacturing Processes, vol. 81, pp. 141-154, 2022, https://doi.org/10.1016/j.jmapro.2022.06.068.
  • K. Alam, “Experimental and numerical analysis of conventional and ultrasonically assisted cutting of bone,” Doctoral Thesis, Loughborough University, 2009.
  • T. H. C. Childs, D. Arola, “Machining of cortical bone: Simulations of chip formation mechanics using metal machining models,” Mach. Sci. Technol., vol. 15, no. 2, pp. 206-230, 2011, https://doi.org /10.1080/10910344.2011.580699.
  • C. Santiuste, M. Rodríguez-Millán, E. Giner, H. Miguélez, “The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone,” Composite Structures, vol. 116, pp. 423-431, 2014, https://doi.org/10.1016/j.compstruct.2014.05.031.
  • P. Zawadzki, R. Talar, “Model of a chip formation mechanism of cortical bone using a tool with a negative rake angle-analysis, modelling, and validation,” The International Journal Advanced Manufacturing Technology, vol. 130, pp. 4187-4205, 2024, https://doi.org/10.1007/s00170-023-12921-w.
  • H. Sağlam, “Tool condition monitoring based on multi-element force measurements using artificial neural networks in milling,” Master Thesis, Selçuk University, Institute of Science and Technology, Konya, 2000.
  • K. Alam, A. V. Mitrofanov, V. V. Silberschmidt, “Finite element analysis of forces of plane cutting of cortical bone,” Computational Materials Science, vol. 46, no. 3, pp. 738-743, 2009, https://doi.org/ 10.1016/j.commatsci.2009.04.035.
  • M. Conward, “Effects of haversian and plexiform components on the machining of bovine cortical bone,” Doctoral Thesis, Rensselaer Polytechnic Institute, Troy, pp. 27-29, New York, 2018.
  • N. B. Dahotre, S. S. Joshi, “Machining of bone and hard tissues,” Springer, New York, 2016.
  • K. I. Al-Abdullah, H. Abdi, C. P. Lim, W. A. Yassin, “Force and temperature modelling of bone milling using artificial neural networks,” Measurement, vol. 116, pp. 25-37, 2018, https://doi.org/10. 1016/j.measurement.2017.10.051.
  • A. H. Rabiee, V. Tahmasbi, M. Qasemi, "Experimental evaluation, modeling and sensitivity analysis of temperature and cutting force in bone micro-milling using support vector regression and EFAST methods,” Engineering Applications of Artificial Intelligence, vol. 120, 105874, 2023, https://doi.org/10.1016/j.engappai.2023.105874.
  • V. Tahmasbi, M. Qasemi, R. Ghasemi, R. Gholami, “Experimental study and sensitivity analysis of force behavior in cortical bone milling,” Medical Engineering & Physics, vol. 105, 103821, 2022, https://doi.org/10.1016/j.medengphy.2022.103821
  • Q. Zheng, Y. Lin, X. Chen, L. He, C. Zhang, Y. Hu, W. Fu, “Optimization of cranial bone milling parameters in craniotomy: a milling force model and ıts experimental validation,” Journal of Mechanics in Medicine and Biology, vol. 22, no. 7, 2250059, 2022, https://doi.org/10.1142/S0219519422500592.
  • Z. Ying, L. Shu, N. Sugita, “Bone Milling: On Monitoring Cutting State and Force Using Sound Signals,” Chin. J. Mech. Eng., vol. 35, pp. 61, 2022, https://doi.org/10.1186/s10033-022-00744-x.
  • Q. Chen, Y. Liu, Q. Dong, "Modeling and experimental validation on temperature diffusion mechanism in high-speed bone milling,” Journal of Materials Processing Technology, vol. 286, 116810, 2020, https://doi.org/10.1016/j.jmatprotec.2020.116810.
  • Z. Liao, D. Axinte, D. Gao, "On modelling of cutting force and temperature in bone milling," Journal of Materials Processing Technology, vol. 266, pp. 627-638, 2019, https://doi.org/10.1016/j.jmatprotec.2018.11.039.
  • J. Sui, N. Sugita, K. Ishii, K. Harada, M. Mitsuishi, “Force analysis of orthogonal cutting of bovine cortical bone,” Machining Science and Technology, vol. 17, no. 4, pp. 637-649, 2013, https://doi. org/10.1080/10910344.2013.837355.
  • N. Sugita, O. Takayuki, M. Mamoru, “Analysis and estimation of cutting-temperature distribution during end milling in relation to orthopedic surgery,” Medical Engineering & Physics, vol. 31, no. 1, pp. 101-107, 2009, https://doi.org/10.1016/j.medengphy.2008.05.001.
  • S. Itoh, Y. Ito, T. Shikita, “Basic study on bone cutting forces for developing surgical instruments,” Bulletin of JSME, vol. 26, no. 222, pp. 2295-2301, 1983, https://doi.org/10.1299/ jsme1958.26.2295.
  • K. L. Wiggins, S. Malkin, “Orthogonal Machining of Bone,” ASME. J Biomech Eng. vol. 100, no. 3, pp. 122-130, 1978, https://doi.org/10.1115/1.3426202.
  • N. Sugita, F. Genma, Y. Nakajima, M. Mitsuishi, “Adaptive controlled milling robot for orthopedic surgery,” Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 605-610, 2007, Doi: 10.1109/ROBOT.2007.363053.
  • J. H. Zhu, J. Deng, X. J. Liu, J. Wang, Y. X. Guo, C. B. Guo, “Prospects of robot-assisted mandibular reconstruction with fibula flap: comparison with a computer-assisted navigation system and freehand technique,” J. Reconstr. Microsurg., vol. 32, no. 9, pp. 661-669, 2016, Doi:10.1055/s-0036-1584805
  • I. J. Kwon, S. M. Kim, S. J. Hwang, “Development of autonomous robot osteotomy for mandibular ramal bone harvest and evaluation of Its accuracy: A phantom mandible-based trial,” Applied Sciences, vol. 11, no. 6, pp. 2885, 2021, https://doi.org/10.3390/app11062885.
  • H. Tian, J. Pan, Y. Gao, X. Dang, B. Tian, D. Meng, Y. Yao, “Prediction modeling and sensitivity analysis of robot bone milling temperature operated by a doctor,” Mathematical Problems in Engineering, vol. 2021, 6806689, pp. 1-17, 2021, https://doi.org/10.1155/2021/6806689.
  • K. Denis, G. V. Ham, J. V. Sloten, R. V. Audekercke, G. V. der Perre, J. D. Schutter, J. P. Kruth, J. Bellemans, G. Fabry, “Influence of bone milling parameters on the temperature rise, milling forces and surface flatness in view of robot-assisted total knee arthroplasty,” International Congress Series, vol. 1230, pp. 300-306, 2001, https://doi.org/10.1016/S0531-5131(01)00067-X.
  • A. Feldmann, P. Ganser, L. Nolte, P. Zysset, “Orthogonal cutting of cortical bone: Temperature elevation and fracture toughness,” International Journal of Machine Tools and Manufacture, vol. 118-119, pp. 1-11, 2017, https://doi.org/10.1016/j.ijmachtools.2017.03.009.
  • Z. Liao, D. A. Axinte, "On chip formation mechanism in orthogonal cutting of bone," International Journal of Machine Tools and Manufacture, vol. 102, pp. 41-55, 2016, https://doi.org/10.1016/j. ijmachtools.2015.12.004.
  • C. Yeager, A. Nazari, D. Arola, “Machining of cortical bone: surface texture, surface integrity and cutting forces,” Machining Science and Technology, vol. 12, no. 1, pp. 100-118, 2008, https://doi.org/10. 1080/10910340801890961.
  • C. Plaskos, A. J. Hodgson, P. Cinquin, ”Modelling and optimization of bone-cutting forces in orthopedic surgery,” In: Ellis, R.E., Peters, T.M. (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science, vol, 2878, Springer, Berlin, Heidelberg, 2003, https://doi.org/10.1007/978-3-540-39899-8_32.
  • W. R. Krause, “Orthogonal bone cutting saw design and operating characteristics,” J Biomech Eng, vol. 109, no. 3, pp. 263-271, 1987, https://doi.org/10.1115/1.3138679.
  • A. Thounaojam, A. K. Birru, “Bone machining: An analysis of machining parameters such as cutting speed, feed and depth of cut using bovine bone,” Jurnal Tribologi, vol. 24, pp. 39-51, 2020, https://jurnaltribologi.mytribos.org/v24/JT-24-39-51.pdf
  • D. Wu, L. Zhang, S. Liu, "Research on establishment and validation of cutting force prediction model for bone milling," 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, pp. 1864-1869, 2015, doi: 10.1109/ROBIO.2015.7419044.
  • M. Mitsuishi, S. Warisawa, N. Sugita, "Determination of the Machining Characteristics of a Biomaterial Using a Machine Tool Designed for Total Knee Arthroplasty,” CIRP Annals, vol. 53, no. 1, pp. 107-112, 2004, https://doi.org/10.1016/S0007-8506(07)60656-8.
  • S. Karmani, “The thermal properties of bone and the effects of surgical intervention,” Current Orthopaedics, vol. 20, no. 1, pp. 52-58, 2006, https://doi.org/10.1016/j.cuor.2005.09.011
  • S. R. H. Davidson, D. F. James, “Measurement of thermal conductivity of bovine cortical bone,” Medical Engineering & Physics, vol. 22, no. 10, pp. 741-747, 2000, https://doi.org/10.1016/S1350-4533(01)00003-0
  • A. Alan, H. S. Vatansever, G. G. Alsan, G. Eskismiir, G. Giray,“Effect of thermal energy produced by drilling on the facial nerve: histopathologic evaluation in guinea pigs,” The Journal of Laryngology & Otology, vol. 119, no. 8, pp. 600-605, 2005, doi:10.1258/0022215054516250.
  • R. K. Pandey, S. Panda, “Drilling of bone: a comprehensive review,” Journal of Clinical Orthopaedics and Trauma, vol. 4, no. 1, pp. 15-30, 2013, https://doi.org/10.1016/j.jcot.2013.01.002.
  • Z. Sun, Y. Wang, K. Xu, et al., “Experimental investigations of drilling temperature of high-energy ultrasonically assisted bone drilling,” Medical Engineering & Physics, vol. 65, pp. 1-7, 2019, https://doi.org/10.1016/j.medengphy.2018.12.019.
  • P. Zawadzki, A. Patalas, R. Labudzki, R. Talar, “Measurement of thermal conductivity of the cortical bone: experimental studies and comparative analysis,” International Conference on Applied Sciences (ICAS 2022), pp. 2540, 012035, 2023, doi:10.1088/1742-6596/2540/1/012035.
  • N. McDannold, N. Vykhodtseva, F. A. Jolesz, K. Hynynen, “MRI investigation of the threshold for thermally induced blood-brain barrier disruption and brain tissue damage in rabbit brain,” Magnetic Resonance in Medicine, vol. 51, no. 5, pp. 913-923, 2004, https://doi.org/10.1002/mrm.20060.
  • N. Hosono, T. Miwa, Y. Mukai, S. Takenaka, T. Makino, T. Fuji, “Potential risk of thermal damage to cervical nerve roots by a high-speed drill,” J Bone Joint Surg Br., vol. 91-B, no. 11, pp. 1541-1544, 2009, https://doi.org/10.1302/0301-620X.91B11.22196.
  • M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int J Hyperth, vol. 19, no. 3, pp. 267-294, 2003, https://doi.org/10.1080/0265673031000119006.
  • B. L. Viglianti, M. W. Dewhirst, J. P. Abraham, J. M. Gorman, E. M. Sparrow, “Rationalization of thermal injury quantification methods: Application to skin burns,” Burns, vol. 40, no. 5, pp. 896-902, 2014, https://doi.org/10.1016/j.burns.2013.12.005.
  • H. Ye, S. De, “Thermal injury of skin and subcutaneous tissues: A review of experimental approaches and numerical models,” Burns, vol. 43, no. 5, pp. 909-932, 2017, https://doi.org/10.1016 /j.burns.2016.11.014.
  • Q. Wang, H. Tian, X. Dang, et al., “Temperature distribution simulation, prediction and sensitivity analysis of orthogonal cutting of cortical bone,” Proceedings of the Institution of Mechanical Engineers, Part H, Journal of Engineering in Medicine, vol. 236, no. 1, pp. 103-120, 2022, doi:10.1177/09544119211049869.
  • D. Vashishth, K. E. Tanner, W. Bonfield, “Contribution, development and morphology of microcracking in cortical bone during crack propagation,” Journal of Biomechanics, vol. 33, no. 9, pp. 1169-1174, 2000, https://doi.org/10.1016/S0021-9290(00)00010-5.
  • R. P. Singh, P. M. Pandey, C. Behera, A. R. Mridha, “Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 234, no. 8, pp. 829-842, 2020, doi:10.1177/0954411920925254.
  • M. F. A. Akhbar, A. R. Yusoff, “Comparison of bone temperature elevation in drilling of human, bovine and porcine bone,” Procedia CIRP, vol. 82, pp. 411-414, 2019, https://doi.org/10.1016/j.procir. 2019.03.220.
  • Z. Liu, J. Sui, B. Chen, et al., “Study on cutting force of reaming porcine bone and substitute bone,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 236, no. 1, pp. 94-102, 2022, doi:10.1177/09544119211043758.
  • B. Kianmajd, D. Carter, M. Soshi, “A novel toolpath force prediction algorithm using CAM volumetric data for optimizing robotic arthroplasty,” Int J CARS 11, pp. 1871-1880, 2016, https://doi.org/10.1007/s11548-016-1355-x.
  • R. K. Pandey, S. S. Panda, “Optimization of bone drilling parameters using grey-based fuzzy algorithm,” Measurement, vol. 47, pp. 386-392, 2014, https://doi.org/10.1016/j.measurement.2013.09. 007.
  • G. Singh, V. Jain, D. Gupta, A. Ghai, “Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 62, pp. 355-365, 2016, https://doi.org/10. 1016/j.jmbbm.2016.05. 015.
  • M. Qasemi, M. M. Sheikhi, M. Zolfaghari, V. Tahmasbi, “Experimental analysis, statistical modeling and optimization of effective parameters on surface quality in cortical bone milling process,” Journal of Mechanics in Medicine and Biology, vol. 20, no. 4, 1-17, 1950078, 2020, doi:10.1142/S0219519419500787.
  • Leslie P. Gartner, “Textbook of Histology, Fourth Edition International Edition,” Elsevier, 2017.
  • A. Dhamodharan, “Analysis of bone cutting mechanics in orthopedic surgery,” Doctoral Thesis, Loughborough University, Oklahoma State University, Bachelor of Technology in Mechanical Engineering, Coimbatore, India, 2012.
  • B. Kaye, C. Randall, D. Walsh, P. Hansma, “The effects of freezing on the mechanical properties of bone,” The Open Bone Journal, vol. 4, pp. 14-19, 2012, 10.2174/18765254012 04010014.
  • R. R. Pelker, G. E. Friedlaender, T. C. Markham, M. M. Panjabi, C. J. Moen, “Effects of freezing and freeze-drying on the biomechanical properties of rat bone,” J Orthop Res., vol. 1, no. 4, pp. 405-411, 1983, https://doi.org/10.1002/jor.1100010409.
  • J. C. Goh, E. J. Ang, K. Bose, “Effect of preservation medium on the mechanical properties of cat bones,” Acta Orthopaedica Scandinavica, vol. 60, no. 4, pp. 465-467, 1989, https://doi.org/10.3109/ 17453678909149321.
  • M. Salai, T. Brosh, N. Keller, et al., “The effects of prolonged cryopreservation on the biomechanical properties of bone allografts: A microbiological, histological and mechanical study,” Cell Tissue Banking, vol. 1, pp. 69-73, 2000, https://doi.org/10.1023/A:10 10163800026.
  • F. Linde, H. C. Sorensen, “The effect of different storage methods on the mechanical properties of trabecular bone,” Journal of Biomechanics, vol. 26, no. 10, pp. 1249-1252, 1993, https://doi.org/10.1016/0021-9290(93)90072-M.
  • E. H. van Haaren, B. C. van der Zwaard, A. J. van den Veen, I. C. Heyligers, P. I. Wuisman, T. H. Smit, “Effect of long term preservation on the mechanical properties of cortical bone in goats,” Acta Orthop, vol. 79, no. 5, pp. 708-716, 2008, https://doi.org/10.10 80/1745367 0810016759.
  • R. E. Borchers, L. J. Gibson, H. Burchardt, W. C. Hayes, “Effects of selected thermal variables on the mechanical properties of trabecular bone.” Biomaterials, vol. 16, no. 7, pp. 545-551, 1995, https://doi.org/10.1016/0142-9612(95)91128-L.
  • A. J. Hamer, J. R. Strachen, M. M. Black, C. J. Ibbotson, I. Stockley, R. A. Elson, “Biomechanical properties of cortical allograft bone using a new method of bone strength measurement. A comparison of fresh, fresh-frozen and irradiated bone,” The journal of bone and Join Surgery, vol. 78, no. 3, pp. 363-368, 1996, https://doi.org/10.1302/0301-620X.78B3.0780363.
  • https://smart.servier.com/ [date: 20.12.2023]
  • A. Chatterjee, G. G. Kar, “Cutting Tools Used in Orthopedic Implantology. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology,” Springer, Singapore, 2022, https://doi.org/10.1007/978-981-15-6278-5_46-1.
  • J. Y. Giraud, S. Villemin, R. Darmana, J. Ph. Cahuzac, A. Autefage, J. P. Morucci, “Bone Cutting,” Clinical Physics and Physiological Measurement, vol. 12, no. 1, pp. 1-19, 1991, doi:10.1088/0143-0815/12/1/001.
  • W. R. Krause, “Orthogonal Bone Cutting: Saw Design and Operating Characteristics,” ASME. J Biomech Eng., vol. 109, no. 3, pp. 263-271, 1987, https://doi.org/10.1115/1.3138679.
  • W. Phanindra Addepalli, S. A. Sawangsri, C. Ghani, “A qualitative study on cutting tool materials for bone surgeries,” Materials Today: Proceedings, vol. 47, no. 10, pp. 2457-2462, 2021, https://doi.org/10.1016/j.matpr.2021.04.549.
  • G. Augustin, T. Zigman, S. Davila, T. Udilljak, T. Staroveski, D. Brezak, S. Babic, “Cortical bone drilling and thermal osteonecrosis,” Clinical Biomechanics, vol. 27, no. 4, pp. 313-325, 2012, https://doi.org/10.1016/j.clinbiomech.2011.10.010.
  • G. Augustin, S. Davila, K. Mihoci, et al., “Thermal osteonecrosis and bone drilling parameters revisited,“ Arch. Orthop. Trauma Surg., vol. 128, pp. 71-77, 2008, https://doi.org/10.1007/s00402-007-0427-3.
  • K. N. Bachus, M. T. Rondina, D. T. Hutchinson, “The effects of drilling force on cortical temperatures and their duration: an in vitro study,“ Medical Engineering & Physics, vol. 22, no. 10, pp. 685-691, 2000, https://doi.org/10.1016/S1350-4533(01)00016-9.
  • M. T. Hillery, I. Shuaib, “Temperature effects in the drilling of human and bovine bone,” Journal of Materials Processing Technology, vol. 92-93, pp. 302-308, 1999, https://doi.org/10.1016/S0924-0136(99)00155-7.
  • W. Wendong, S. Yikai, Y. Ning, Y. Xiaoqing, “Experimental analysis of drilling process in cortical bone,” Medical Engineering & Physics, vol. 36, no. 2, pp. 261-266, 2014, https://doi.org/10.1016/j. medengphy.2013.08.006.
  • F. Pupulin, G. Oresta, T. Sunar, P. Parenti, “On the thermal impact during drilling operations in guided dental surgery: An experimental and numerical investigation,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 150, 106327, 2024, https://doi.org/10.1016/j.jmbbm.2023.106327.
  • U. A. Pangnguriseng, S. Imade, S. Furuya, K. Nakazawa, K. Shiraishi, M. Sato, T. Kawamura, Y. Uchio, “Effect of bone density on the drill-hole diameter made by a cannulated drill bit in cancellous bone,” Journal of Orthopaedic Science, 2024, https://doi.org/10.1016/j.jos.2024.04.001.
  • H. Y. Lin, J. H. Yang, Y. T. Li, C. H. Chou, S. J. Tsai, H. H. Chang, C. P. Lin, “Comparison of the physical, thermal, and biological effects on implant bone site when using either zirconia or stainless-steel drill for implant bone site preparation,” Journal of the Formosan Medical Association, pp. 1-7, 2024, https://doi.org/10.1016/j.jfma.2024.01.011.
  • I. Dörsam, A. Bauroth, L. Keilig, C. Bourauel, F. Heinemann, “Definition of a drilling protocol for mini dental implants in different bone qualities,” Annals of Anatomy-Anatomischer Anzeiger, vol. 231, 151511, 2020, https://doi.org/10.1016/j.aanat.2020.151 511.
  • R. Jimbo, N. Tovar, R. B. Anchieta, L. S. Machado, C. Marin, H. S. Teixeira, P. G. Coelho, “The combined effects of undersized drilling and implant macrogeometry on bone healing around dental implants: an experimental study,” International Journal of Oral and Maxillofacial Surgery, vol. 43, no. 10, pp. 1269-1275, 2014, https://doi.org/10. 1016/j.ijom.2014.03.017.
  • S. Li, A. Abdel-Wahab, E. Demirci, V. V. Silberschmidt, “Penetration of cutting tool into cortical bone: Experimental and numerical investigation of anisotropic mechanical behaviour,” Journal of Biomechanics, vol. 47, no. 5, 2014, pp. 1117-1126, 2014, https://doi.org/10.1016/j.jbiomech.2013.12.019.
  • P. Addepalli, W. Sawangsri, S. A. C. Ghani, “A scientometric analysis of bone cutting tools & methodologies: Mapping the research landscape,” Injury, vol. 55, no. 4, 111458, 2024, https://doi.org/10.1016/j.injury.2024.111458.
  • B. Takabi, B. L. Tai, "A review of cutting mechanics and modeling techniques for biological materials," Medical Engineering & Physics, vol. 45, 2017, pp. 1-14, https://doi.org/10.1016/j. medengphy.2017.04.004.
  • L. Shu, S. Li, M. Terashima, W. Bai, T. Hanami, R. Hasegawa, N. Sugita, "A novel self-centring drill bit design for low-trauma bone drilling,” International Journal of Machine Tools and Manufacture, vol. 154, 103568, 2020, https://doi.org/10.1016/j.ijmachtools.2020.103568.
  • T. P. James, G. Chang, S. Micucci, A. Sagar, E. L. Smith, C. Cassidy, "Effect of applied force and blade speed on histopathology of bone during resection by sagittal saw,” Medical Engineering & Physics, vol. 36, no. 3, pp. 364-370, 2014, https://doi.org/10.1016/j.medengphy.2013.12.002.
  • S. Toksvig-Larsen, L. Ryd, A. Lindstrand, “Temperature influence in different orthopaedic saw blades,“ The Journal of Arthroplasty, vol. 7, no. 1, pp. 21-24, 1992, doi:10.1016/0883-5403(92)90027-n.
  • T. Mizutani, U. Satake, T. Enomoto, “Bone grinding using coarse-grained diamond wheels to suppress thermal damage,” Precision Engineering, vol. 78, pp. 163-170, 2022, https://doi.org/10.1016/j.precisioneng.2022.08.003.
  • L. Zhang, B. L. Tai, A. C. Wang, A. J. Shih, “Mist cooling in neurosurgical bone grinding,” CIRP Annals, vol. 62, no. 1, pp. 367-370, 2013, https://doi.org/10.1016/j.cirp.2013.03.125.
Year 2024, Volume: 12 Issue: 3, 801 - 821, 01.09.2024
https://doi.org/10.36306/konjes.1430115

Abstract

References

  • S. Neseli, S. Tasdemir, S. Yaldız, “Prediction of surface roughness on turning with artificial neural network,” Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University, vol. 22, no. 3, pp.65-75, 2009, https://dergipark.org.tr/en/pub/ogummf/issue/30159/325473.
  • B. Bakır, “Effects of geometry carbur end mill on machinability for CNC machines,” Master Thesis, Marmara University Institute of Science and Technology, İstanbul, 2005.
  • E. Yılmaz, “Determining the appropriate tool selection by comparing experimental cutting performance of tool holders produced by two different methods from tool steel (AISI 4340),” Master Thesis, Marmara University Institute of Science and Technology, İstanbul, pp. 2, 2019.
  • M. P. Groover, “Principles of modern manufacturing,” J.Wiley & Sons, 2011.
  • A. Kurt, S. Sürücüler, A. Kirik, “Developing a mathematical model for the cutting forces prediction,” Journal of Polytechnic, vol. 13, no. 1, pp. 15-20, 2010, https://dergipark.org.tr/en/pub/ politeknik/issue/33052/367852.
  • B. Yılmaz, “Design of the dynamic chip breaker with pneumatic driven and investigation of the effects on machining parameters,” Master Thesis, Gazi University Institute of Science and Technology, Ankara, pp. 10-50, 2016.
  • M. C. Çakır, “Modern machining methods,” Dora Yayıncılık, 2010.
  • İ. Çiftçi, H. Gökçe, “Optimization of cutting tool and cutting parameters in machining of molybdenum alloys through the Taguchi Method,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 34, no. 1, pp. 201-213, 2019, Doi:10.17341/gazimmfd.416482.
  • M. Aydın, U. Köklü, “A study of ball-end milling forces by finite element model with Lagrangian boundary of orthogonal cutting operation,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 33, no. 2, pp. 517-527, 2018, https://doi.org/10.17341/gazimmfd.416360.
  • A. R. Eriksson, T. Albrektsson, “The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber,” Journal of Oral and Maxillofaccial Surgery, vol. 42, no. 11, pp. 705-711, 1984, https://doi.org/10.1016/0278-2391(84)90417-8.
  • J. Christie, “Surgical heat injury of bone,” Injury, vol. 13, no. 3, pp. 188-190, 1981, https://doi.org/ 10.1016/0020-1383(81)90236-9.
  • F. G. Pallan, “Histological changes in bone after insertion of skeletal fixation pins,” Journal of Oral Surgery, Anesthesia, And Hospital Dental Service, vol. 18, pp. 400-408, 1960, PMID: 14429940.
  • H. C. Thompson, “Effect of drilling into bone,” Journal of Oral Surgery, Anesthesia, And Hospital Dental Service, vol. 16, no. 1, pp. 22-30, 1958, PMID: 13492103.
  • L. S. Matthews, C. Hirsch, “Temperatures measured in human cortical bone when drilling,” The Journal of Bone and Joint Surgery, vol. 54, no. 2, pp. 297-308, 1972, doi:10.2106/00004623-197254020-00008.
  • S. T. Larsen, L. Ryd, “Temperature elevation during knee arthroplasty,” Acta Orthopaedica Scandinavica, vol. 60, no. 4, pp. 439-442, 1989, https://doi.org/10.3109/17453678909149314.
  • W. Bonfield, C. H. Li, “The temperature dependence of the deformation of bone,” Journal of Biomechanics, vol. 1, no. 4, pp. 323-329, 1968, https://doi.org/10.1016/0021-9290(68)90026-2.
  • B. Noble, “Bone microdamage and cell apoptosis,” European Cells and Materials, vol. 6, pp. 46-56, 2003, doi:10.22203/eCM.v006a05.
  • H. K. Parsa, “An investigation into the temperature distribution resulting from cutting of compact bone using a reciprocating bone saw,” Master Thesis, Department of Mechanical and Electronic Engineering Institute of Technology, Sligo, pp. 26-27, 2006.
  • R. Bielby, E. Jones, D. McGonagle, “The role of mesenchymal stem cells in maintenance and repair of bone,” Injury, vol. 38, no. 1, pp. 26-32, 2007, https://doi.org/10.1016/j.injury.2007.02.007.
  • C. Baycu, “Histology-Unit 7, Open Education Faculty Publications, Anadolu University,” no. 480, pp. 124-144, Eskisehir, 1995.
  • T. Udiljak, D. Ciglar, S. Skoric, “Investigation into bone drilling and thermal bone necrosis,” Advances in Production Engineering Management, vol. 2, no. 3, pp. 103-112, 2007.
  • U. Kneser, D. J. Schaefer, E. Polykandriotis, R. E. Horch, “Tissue engineering of bone: the reconstructive surgeon’s point of view,” Journal of Cellular and Molecular Medicine, vol. 10, no. 1, pp. 7-19, 2006, https://doi.org/10.1111/j.1582-4934.2006.tb00287.x.
  • H. Ogura, K. Ohya, “Physiology and pharmacology of hard tissues-effect of chemicals on the formation and the resorption mechanism of tooth and bone,” Nihon yakurigaku zasshi, vol. 105, no. 5, pp. 305-318, 1995, doi: 10.1254/fpj.105.305.
  • K. W. S. Ashwell, “Concise body atlas: the compact guide to the human body,” London: Quad Quarto Publishing Group, 2017.
  • A. G. Robling, A. B. Castillo, C. H. Turner, “Biomechanical and molecular regulation of bone remodeling,” Annual Review of Biomedical Engineering, vol. 8, pp. 455-498, 2006, https://doi.org/10. 1146/annurev.bioeng.8.061505.095721.
  • G. J. Tortora, B. Derrickson, “Principles of Anatomy and Physiology,” Hoboken: Wiley, pp. 1146, 2017.
  • J. A. Buckwalter, M. J. Glimcher, R. R. Cooper, R. Recker, “Bone biology: Structure, blood supply, cells, matrix, and mineralization,” Journal of bone and joint surgery, vol. 77, pp. 1256-1275, 1995a, https://doi.org/10.2106/00004623-199508000-00019.
  • M. F. A. Akhbar, A. W. Sulong, “Surgical drill bit design and thermomechanical damage in bone drilling: A review,” Annals of Biomedical Engineering Society, vol. 49, pp. 29-56, 2021, https://doi.org/10.1007/s10439-020-02600-2.
  • İ. V. Odar, “Anatomy Textbook 1,” Hacettepe-Taş Kitapçılık Ltd. Şti., pp. 565, Ankara, 1986.
  • L. Bayliss, D. J. Mahoney, P. Monk, “Normal bone physiology, remodeling and its hormonal regulation,” Surgery, vol. 30, no. 2, pp. 47-53, 2012.
  • J. A. Buckwalter, M. J. Glimcher, R. R. Cooper, R. Recker, “Bone biology,” J Bone Joint Surg Am., vol. 77, pp. 1256-1275, 2010.
  • B. Clarke, “Normal bone anatomy and physiology,” Clinical Journal of the American Society of Nephrology, vol. 3, pp. 131-139, 2008, doi: 10.2215/CJN.04151206.
  • U. Kini, B. N. Nandeesh, “Physiology of bone formation, remodeling, and metabolism,” Radionuclide and Hybrid Bone Imaging, pp. 29-57, 2012, doi:10.1007/978-3-642-02400-9_2.
  • C. E. Metzger, D. B. Burr, M. R. Allen, “Anatomy and structural considerations,” Encyclopedia of Bone Biology, pp. 218–232, 2020, https://doi.org/10.1016/B978-0-12-801238-3.62234-1.
  • O. R. William, “Functional anatomy and physiology of domestic animals. Fourth edition,” pp. 179-198, 2009.
  • S. C. Cowin, “Bone mechanics handbook, second edition,” Taylor & Francis, pp. 8,15, 2001.
  • J. M. Bassert, T. Colville, “Clinical anatomy and physiology for veterinary technicians,” pp. 95-118, 2002.
  • L. E. Lanyon, “Osteocytes, strain detection, bone modeling and remodeling,” Calcif Tissue Int. vol. 53, pp. 102-107, 1993, https://doi.org/10.1007/BF01673415.
  • S. Standring, “Gray’s anatomy: The anatomical basis of clinical practice. Forty-first edition,” Elsevier press. pp. 81-123, 2016.
  • Leslie P. Gartner, “Color Atlas and Text of Histology Seventh Edition,” Wolters Kluwer, 2018.
  • S. Li, A. Zahedi, V. Silberschmidt, “Numerical simulation of bone cutting: hybrid SPH-FE approach. Numerical methods and advanced simulation in biomechanics and biological Processes,” Elsevier, Amsterdam, Netherlands, pp. 187-201, 2018, https://doi.org/10.1016/B978-0-12-811718-7.00010-1.
  • M. E. Launey, P. Y. Chen, J. McKittrick, R. O. Ritchie, “Mechanistic aspects of the fracture toughness of elk antler bone,” Acta Biomater., vol. 6, no. 4, pp. 1505-1514, 2010, https://doi.org/10. 1016/j.actbio.2009.11.026.
  • V. Ebacher, P. Guy, T. R. Oxland, R. Wang, “Sub-lamellar microcracking and roles of canaliculi in human cortical bone,” Acta Biomaterialia, vol. 8, no. 3, pp. 1093-1100, 2012, https://doi.org/10.1016 /j.actbio.2011.11.013.
  • J. D. Currey, “Mechanical properties and adaptations of some less familiar bony tissues,“ J. Mech. Behav. Biomed. Mater., vol. 3, no. 5, pp. 357-372, 2010, https://doi.org/10.1016/j.jmbbm.2010.03.002.
  • A. Molinari, R. Cheriguene, H. Miguelez, “Contact variables and thermal effects at the tool chip interface in orthogonal cutting,” International Journal of Solids and Structures, vol. 49, no. 26, pp. 3774-3796, 2012, https://doi.org/10.1016/j.ijsolstr.2012.08.013.
  • X. Soldani, C. Santiuste, A. Muñoz-Sánchez, H. Miguélez, “Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites,” Composites Part A: Applied science and Manufacturing, vol. 42, no. 9, pp. 1205-1216, 2011, https://doi.org/10.1016/ j.compositesa.2011.04.023.
  • M. E. Merchant, “Basic mechanics of the metal cutting process,” J. Appl. Mech., vol. 11 (A), pp. 168-175, 1944, https://doi.org/10.1115/1.4009380.
  • M. Marco, M. Rodríguez-Millán, C. Santiuste, E. Giner, M. H. Miguélez, “A review on recent advances in numerical modelling of bone cutting,” J. Mech. Behav. Biomed. Mater., vol. 44, pp. 179-201, 2015, https://doi.org/10.1016/j.jmbbm.2014.12.006.
  • D. A. Stephenson, J. S. Agapiou, “Metal cutting theory and practice, third edition,” CRC Press Taylor & Francis Group LLC, Boca Raton, 2016.
  • C. H. Jacobs, M. H. Pope, J. T. Berry, F. Hoaglund, “A study of the bone machining process- orthogonal cutting,” Journal of Biomechanics, vol. 7, no. 2, pp. 131-136, 1974, https://doi.org/10.1016 /0021-9290(74)90051-7.
  • H. Wang, U. Satake, T. Enomoto, “Serrated chip formation mechanism in orthogonal cutting of cortical bone at small depths of cut,” Journal of Materials Processing Technology, vol. 319, 118097, 2023, https://doi.org/10.1016/j.jmatprotec.2023.118097.
  • W. Bai, L. Shu, R. Sun, J. Xu, V. V. Silberschmidt, N. Sugita, “Mechanism of material removal in orthogonal cutting of cortical bone,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 104, 103618, 2020, https://doi.org/10.1016/j.jmbbm.2020.103618.
  • M. Qasemi, V. Tahmasbi, M. M. Sheikhi, M. Zolfaghari, “An effect of osteon orientation in end milling operation of cortical bone based on FEM and experiment,” Journal of Manufacturing Processes, vol. 81, pp. 141-154, 2022, https://doi.org/10.1016/j.jmapro.2022.06.068.
  • K. Alam, “Experimental and numerical analysis of conventional and ultrasonically assisted cutting of bone,” Doctoral Thesis, Loughborough University, 2009.
  • T. H. C. Childs, D. Arola, “Machining of cortical bone: Simulations of chip formation mechanics using metal machining models,” Mach. Sci. Technol., vol. 15, no. 2, pp. 206-230, 2011, https://doi.org /10.1080/10910344.2011.580699.
  • C. Santiuste, M. Rodríguez-Millán, E. Giner, H. Miguélez, “The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone,” Composite Structures, vol. 116, pp. 423-431, 2014, https://doi.org/10.1016/j.compstruct.2014.05.031.
  • P. Zawadzki, R. Talar, “Model of a chip formation mechanism of cortical bone using a tool with a negative rake angle-analysis, modelling, and validation,” The International Journal Advanced Manufacturing Technology, vol. 130, pp. 4187-4205, 2024, https://doi.org/10.1007/s00170-023-12921-w.
  • H. Sağlam, “Tool condition monitoring based on multi-element force measurements using artificial neural networks in milling,” Master Thesis, Selçuk University, Institute of Science and Technology, Konya, 2000.
  • K. Alam, A. V. Mitrofanov, V. V. Silberschmidt, “Finite element analysis of forces of plane cutting of cortical bone,” Computational Materials Science, vol. 46, no. 3, pp. 738-743, 2009, https://doi.org/ 10.1016/j.commatsci.2009.04.035.
  • M. Conward, “Effects of haversian and plexiform components on the machining of bovine cortical bone,” Doctoral Thesis, Rensselaer Polytechnic Institute, Troy, pp. 27-29, New York, 2018.
  • N. B. Dahotre, S. S. Joshi, “Machining of bone and hard tissues,” Springer, New York, 2016.
  • K. I. Al-Abdullah, H. Abdi, C. P. Lim, W. A. Yassin, “Force and temperature modelling of bone milling using artificial neural networks,” Measurement, vol. 116, pp. 25-37, 2018, https://doi.org/10. 1016/j.measurement.2017.10.051.
  • A. H. Rabiee, V. Tahmasbi, M. Qasemi, "Experimental evaluation, modeling and sensitivity analysis of temperature and cutting force in bone micro-milling using support vector regression and EFAST methods,” Engineering Applications of Artificial Intelligence, vol. 120, 105874, 2023, https://doi.org/10.1016/j.engappai.2023.105874.
  • V. Tahmasbi, M. Qasemi, R. Ghasemi, R. Gholami, “Experimental study and sensitivity analysis of force behavior in cortical bone milling,” Medical Engineering & Physics, vol. 105, 103821, 2022, https://doi.org/10.1016/j.medengphy.2022.103821
  • Q. Zheng, Y. Lin, X. Chen, L. He, C. Zhang, Y. Hu, W. Fu, “Optimization of cranial bone milling parameters in craniotomy: a milling force model and ıts experimental validation,” Journal of Mechanics in Medicine and Biology, vol. 22, no. 7, 2250059, 2022, https://doi.org/10.1142/S0219519422500592.
  • Z. Ying, L. Shu, N. Sugita, “Bone Milling: On Monitoring Cutting State and Force Using Sound Signals,” Chin. J. Mech. Eng., vol. 35, pp. 61, 2022, https://doi.org/10.1186/s10033-022-00744-x.
  • Q. Chen, Y. Liu, Q. Dong, "Modeling and experimental validation on temperature diffusion mechanism in high-speed bone milling,” Journal of Materials Processing Technology, vol. 286, 116810, 2020, https://doi.org/10.1016/j.jmatprotec.2020.116810.
  • Z. Liao, D. Axinte, D. Gao, "On modelling of cutting force and temperature in bone milling," Journal of Materials Processing Technology, vol. 266, pp. 627-638, 2019, https://doi.org/10.1016/j.jmatprotec.2018.11.039.
  • J. Sui, N. Sugita, K. Ishii, K. Harada, M. Mitsuishi, “Force analysis of orthogonal cutting of bovine cortical bone,” Machining Science and Technology, vol. 17, no. 4, pp. 637-649, 2013, https://doi. org/10.1080/10910344.2013.837355.
  • N. Sugita, O. Takayuki, M. Mamoru, “Analysis and estimation of cutting-temperature distribution during end milling in relation to orthopedic surgery,” Medical Engineering & Physics, vol. 31, no. 1, pp. 101-107, 2009, https://doi.org/10.1016/j.medengphy.2008.05.001.
  • S. Itoh, Y. Ito, T. Shikita, “Basic study on bone cutting forces for developing surgical instruments,” Bulletin of JSME, vol. 26, no. 222, pp. 2295-2301, 1983, https://doi.org/10.1299/ jsme1958.26.2295.
  • K. L. Wiggins, S. Malkin, “Orthogonal Machining of Bone,” ASME. J Biomech Eng. vol. 100, no. 3, pp. 122-130, 1978, https://doi.org/10.1115/1.3426202.
  • N. Sugita, F. Genma, Y. Nakajima, M. Mitsuishi, “Adaptive controlled milling robot for orthopedic surgery,” Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 605-610, 2007, Doi: 10.1109/ROBOT.2007.363053.
  • J. H. Zhu, J. Deng, X. J. Liu, J. Wang, Y. X. Guo, C. B. Guo, “Prospects of robot-assisted mandibular reconstruction with fibula flap: comparison with a computer-assisted navigation system and freehand technique,” J. Reconstr. Microsurg., vol. 32, no. 9, pp. 661-669, 2016, Doi:10.1055/s-0036-1584805
  • I. J. Kwon, S. M. Kim, S. J. Hwang, “Development of autonomous robot osteotomy for mandibular ramal bone harvest and evaluation of Its accuracy: A phantom mandible-based trial,” Applied Sciences, vol. 11, no. 6, pp. 2885, 2021, https://doi.org/10.3390/app11062885.
  • H. Tian, J. Pan, Y. Gao, X. Dang, B. Tian, D. Meng, Y. Yao, “Prediction modeling and sensitivity analysis of robot bone milling temperature operated by a doctor,” Mathematical Problems in Engineering, vol. 2021, 6806689, pp. 1-17, 2021, https://doi.org/10.1155/2021/6806689.
  • K. Denis, G. V. Ham, J. V. Sloten, R. V. Audekercke, G. V. der Perre, J. D. Schutter, J. P. Kruth, J. Bellemans, G. Fabry, “Influence of bone milling parameters on the temperature rise, milling forces and surface flatness in view of robot-assisted total knee arthroplasty,” International Congress Series, vol. 1230, pp. 300-306, 2001, https://doi.org/10.1016/S0531-5131(01)00067-X.
  • A. Feldmann, P. Ganser, L. Nolte, P. Zysset, “Orthogonal cutting of cortical bone: Temperature elevation and fracture toughness,” International Journal of Machine Tools and Manufacture, vol. 118-119, pp. 1-11, 2017, https://doi.org/10.1016/j.ijmachtools.2017.03.009.
  • Z. Liao, D. A. Axinte, "On chip formation mechanism in orthogonal cutting of bone," International Journal of Machine Tools and Manufacture, vol. 102, pp. 41-55, 2016, https://doi.org/10.1016/j. ijmachtools.2015.12.004.
  • C. Yeager, A. Nazari, D. Arola, “Machining of cortical bone: surface texture, surface integrity and cutting forces,” Machining Science and Technology, vol. 12, no. 1, pp. 100-118, 2008, https://doi.org/10. 1080/10910340801890961.
  • C. Plaskos, A. J. Hodgson, P. Cinquin, ”Modelling and optimization of bone-cutting forces in orthopedic surgery,” In: Ellis, R.E., Peters, T.M. (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science, vol, 2878, Springer, Berlin, Heidelberg, 2003, https://doi.org/10.1007/978-3-540-39899-8_32.
  • W. R. Krause, “Orthogonal bone cutting saw design and operating characteristics,” J Biomech Eng, vol. 109, no. 3, pp. 263-271, 1987, https://doi.org/10.1115/1.3138679.
  • A. Thounaojam, A. K. Birru, “Bone machining: An analysis of machining parameters such as cutting speed, feed and depth of cut using bovine bone,” Jurnal Tribologi, vol. 24, pp. 39-51, 2020, https://jurnaltribologi.mytribos.org/v24/JT-24-39-51.pdf
  • D. Wu, L. Zhang, S. Liu, "Research on establishment and validation of cutting force prediction model for bone milling," 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, pp. 1864-1869, 2015, doi: 10.1109/ROBIO.2015.7419044.
  • M. Mitsuishi, S. Warisawa, N. Sugita, "Determination of the Machining Characteristics of a Biomaterial Using a Machine Tool Designed for Total Knee Arthroplasty,” CIRP Annals, vol. 53, no. 1, pp. 107-112, 2004, https://doi.org/10.1016/S0007-8506(07)60656-8.
  • S. Karmani, “The thermal properties of bone and the effects of surgical intervention,” Current Orthopaedics, vol. 20, no. 1, pp. 52-58, 2006, https://doi.org/10.1016/j.cuor.2005.09.011
  • S. R. H. Davidson, D. F. James, “Measurement of thermal conductivity of bovine cortical bone,” Medical Engineering & Physics, vol. 22, no. 10, pp. 741-747, 2000, https://doi.org/10.1016/S1350-4533(01)00003-0
  • A. Alan, H. S. Vatansever, G. G. Alsan, G. Eskismiir, G. Giray,“Effect of thermal energy produced by drilling on the facial nerve: histopathologic evaluation in guinea pigs,” The Journal of Laryngology & Otology, vol. 119, no. 8, pp. 600-605, 2005, doi:10.1258/0022215054516250.
  • R. K. Pandey, S. Panda, “Drilling of bone: a comprehensive review,” Journal of Clinical Orthopaedics and Trauma, vol. 4, no. 1, pp. 15-30, 2013, https://doi.org/10.1016/j.jcot.2013.01.002.
  • Z. Sun, Y. Wang, K. Xu, et al., “Experimental investigations of drilling temperature of high-energy ultrasonically assisted bone drilling,” Medical Engineering & Physics, vol. 65, pp. 1-7, 2019, https://doi.org/10.1016/j.medengphy.2018.12.019.
  • P. Zawadzki, A. Patalas, R. Labudzki, R. Talar, “Measurement of thermal conductivity of the cortical bone: experimental studies and comparative analysis,” International Conference on Applied Sciences (ICAS 2022), pp. 2540, 012035, 2023, doi:10.1088/1742-6596/2540/1/012035.
  • N. McDannold, N. Vykhodtseva, F. A. Jolesz, K. Hynynen, “MRI investigation of the threshold for thermally induced blood-brain barrier disruption and brain tissue damage in rabbit brain,” Magnetic Resonance in Medicine, vol. 51, no. 5, pp. 913-923, 2004, https://doi.org/10.1002/mrm.20060.
  • N. Hosono, T. Miwa, Y. Mukai, S. Takenaka, T. Makino, T. Fuji, “Potential risk of thermal damage to cervical nerve roots by a high-speed drill,” J Bone Joint Surg Br., vol. 91-B, no. 11, pp. 1541-1544, 2009, https://doi.org/10.1302/0301-620X.91B11.22196.
  • M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int J Hyperth, vol. 19, no. 3, pp. 267-294, 2003, https://doi.org/10.1080/0265673031000119006.
  • B. L. Viglianti, M. W. Dewhirst, J. P. Abraham, J. M. Gorman, E. M. Sparrow, “Rationalization of thermal injury quantification methods: Application to skin burns,” Burns, vol. 40, no. 5, pp. 896-902, 2014, https://doi.org/10.1016/j.burns.2013.12.005.
  • H. Ye, S. De, “Thermal injury of skin and subcutaneous tissues: A review of experimental approaches and numerical models,” Burns, vol. 43, no. 5, pp. 909-932, 2017, https://doi.org/10.1016 /j.burns.2016.11.014.
  • Q. Wang, H. Tian, X. Dang, et al., “Temperature distribution simulation, prediction and sensitivity analysis of orthogonal cutting of cortical bone,” Proceedings of the Institution of Mechanical Engineers, Part H, Journal of Engineering in Medicine, vol. 236, no. 1, pp. 103-120, 2022, doi:10.1177/09544119211049869.
  • D. Vashishth, K. E. Tanner, W. Bonfield, “Contribution, development and morphology of microcracking in cortical bone during crack propagation,” Journal of Biomechanics, vol. 33, no. 9, pp. 1169-1174, 2000, https://doi.org/10.1016/S0021-9290(00)00010-5.
  • R. P. Singh, P. M. Pandey, C. Behera, A. R. Mridha, “Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 234, no. 8, pp. 829-842, 2020, doi:10.1177/0954411920925254.
  • M. F. A. Akhbar, A. R. Yusoff, “Comparison of bone temperature elevation in drilling of human, bovine and porcine bone,” Procedia CIRP, vol. 82, pp. 411-414, 2019, https://doi.org/10.1016/j.procir. 2019.03.220.
  • Z. Liu, J. Sui, B. Chen, et al., “Study on cutting force of reaming porcine bone and substitute bone,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 236, no. 1, pp. 94-102, 2022, doi:10.1177/09544119211043758.
  • B. Kianmajd, D. Carter, M. Soshi, “A novel toolpath force prediction algorithm using CAM volumetric data for optimizing robotic arthroplasty,” Int J CARS 11, pp. 1871-1880, 2016, https://doi.org/10.1007/s11548-016-1355-x.
  • R. K. Pandey, S. S. Panda, “Optimization of bone drilling parameters using grey-based fuzzy algorithm,” Measurement, vol. 47, pp. 386-392, 2014, https://doi.org/10.1016/j.measurement.2013.09. 007.
  • G. Singh, V. Jain, D. Gupta, A. Ghai, “Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 62, pp. 355-365, 2016, https://doi.org/10. 1016/j.jmbbm.2016.05. 015.
  • M. Qasemi, M. M. Sheikhi, M. Zolfaghari, V. Tahmasbi, “Experimental analysis, statistical modeling and optimization of effective parameters on surface quality in cortical bone milling process,” Journal of Mechanics in Medicine and Biology, vol. 20, no. 4, 1-17, 1950078, 2020, doi:10.1142/S0219519419500787.
  • Leslie P. Gartner, “Textbook of Histology, Fourth Edition International Edition,” Elsevier, 2017.
  • A. Dhamodharan, “Analysis of bone cutting mechanics in orthopedic surgery,” Doctoral Thesis, Loughborough University, Oklahoma State University, Bachelor of Technology in Mechanical Engineering, Coimbatore, India, 2012.
  • B. Kaye, C. Randall, D. Walsh, P. Hansma, “The effects of freezing on the mechanical properties of bone,” The Open Bone Journal, vol. 4, pp. 14-19, 2012, 10.2174/18765254012 04010014.
  • R. R. Pelker, G. E. Friedlaender, T. C. Markham, M. M. Panjabi, C. J. Moen, “Effects of freezing and freeze-drying on the biomechanical properties of rat bone,” J Orthop Res., vol. 1, no. 4, pp. 405-411, 1983, https://doi.org/10.1002/jor.1100010409.
  • J. C. Goh, E. J. Ang, K. Bose, “Effect of preservation medium on the mechanical properties of cat bones,” Acta Orthopaedica Scandinavica, vol. 60, no. 4, pp. 465-467, 1989, https://doi.org/10.3109/ 17453678909149321.
  • M. Salai, T. Brosh, N. Keller, et al., “The effects of prolonged cryopreservation on the biomechanical properties of bone allografts: A microbiological, histological and mechanical study,” Cell Tissue Banking, vol. 1, pp. 69-73, 2000, https://doi.org/10.1023/A:10 10163800026.
  • F. Linde, H. C. Sorensen, “The effect of different storage methods on the mechanical properties of trabecular bone,” Journal of Biomechanics, vol. 26, no. 10, pp. 1249-1252, 1993, https://doi.org/10.1016/0021-9290(93)90072-M.
  • E. H. van Haaren, B. C. van der Zwaard, A. J. van den Veen, I. C. Heyligers, P. I. Wuisman, T. H. Smit, “Effect of long term preservation on the mechanical properties of cortical bone in goats,” Acta Orthop, vol. 79, no. 5, pp. 708-716, 2008, https://doi.org/10.10 80/1745367 0810016759.
  • R. E. Borchers, L. J. Gibson, H. Burchardt, W. C. Hayes, “Effects of selected thermal variables on the mechanical properties of trabecular bone.” Biomaterials, vol. 16, no. 7, pp. 545-551, 1995, https://doi.org/10.1016/0142-9612(95)91128-L.
  • A. J. Hamer, J. R. Strachen, M. M. Black, C. J. Ibbotson, I. Stockley, R. A. Elson, “Biomechanical properties of cortical allograft bone using a new method of bone strength measurement. A comparison of fresh, fresh-frozen and irradiated bone,” The journal of bone and Join Surgery, vol. 78, no. 3, pp. 363-368, 1996, https://doi.org/10.1302/0301-620X.78B3.0780363.
  • https://smart.servier.com/ [date: 20.12.2023]
  • A. Chatterjee, G. G. Kar, “Cutting Tools Used in Orthopedic Implantology. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology,” Springer, Singapore, 2022, https://doi.org/10.1007/978-981-15-6278-5_46-1.
  • J. Y. Giraud, S. Villemin, R. Darmana, J. Ph. Cahuzac, A. Autefage, J. P. Morucci, “Bone Cutting,” Clinical Physics and Physiological Measurement, vol. 12, no. 1, pp. 1-19, 1991, doi:10.1088/0143-0815/12/1/001.
  • W. R. Krause, “Orthogonal Bone Cutting: Saw Design and Operating Characteristics,” ASME. J Biomech Eng., vol. 109, no. 3, pp. 263-271, 1987, https://doi.org/10.1115/1.3138679.
  • W. Phanindra Addepalli, S. A. Sawangsri, C. Ghani, “A qualitative study on cutting tool materials for bone surgeries,” Materials Today: Proceedings, vol. 47, no. 10, pp. 2457-2462, 2021, https://doi.org/10.1016/j.matpr.2021.04.549.
  • G. Augustin, T. Zigman, S. Davila, T. Udilljak, T. Staroveski, D. Brezak, S. Babic, “Cortical bone drilling and thermal osteonecrosis,” Clinical Biomechanics, vol. 27, no. 4, pp. 313-325, 2012, https://doi.org/10.1016/j.clinbiomech.2011.10.010.
  • G. Augustin, S. Davila, K. Mihoci, et al., “Thermal osteonecrosis and bone drilling parameters revisited,“ Arch. Orthop. Trauma Surg., vol. 128, pp. 71-77, 2008, https://doi.org/10.1007/s00402-007-0427-3.
  • K. N. Bachus, M. T. Rondina, D. T. Hutchinson, “The effects of drilling force on cortical temperatures and their duration: an in vitro study,“ Medical Engineering & Physics, vol. 22, no. 10, pp. 685-691, 2000, https://doi.org/10.1016/S1350-4533(01)00016-9.
  • M. T. Hillery, I. Shuaib, “Temperature effects in the drilling of human and bovine bone,” Journal of Materials Processing Technology, vol. 92-93, pp. 302-308, 1999, https://doi.org/10.1016/S0924-0136(99)00155-7.
  • W. Wendong, S. Yikai, Y. Ning, Y. Xiaoqing, “Experimental analysis of drilling process in cortical bone,” Medical Engineering & Physics, vol. 36, no. 2, pp. 261-266, 2014, https://doi.org/10.1016/j. medengphy.2013.08.006.
  • F. Pupulin, G. Oresta, T. Sunar, P. Parenti, “On the thermal impact during drilling operations in guided dental surgery: An experimental and numerical investigation,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 150, 106327, 2024, https://doi.org/10.1016/j.jmbbm.2023.106327.
  • U. A. Pangnguriseng, S. Imade, S. Furuya, K. Nakazawa, K. Shiraishi, M. Sato, T. Kawamura, Y. Uchio, “Effect of bone density on the drill-hole diameter made by a cannulated drill bit in cancellous bone,” Journal of Orthopaedic Science, 2024, https://doi.org/10.1016/j.jos.2024.04.001.
  • H. Y. Lin, J. H. Yang, Y. T. Li, C. H. Chou, S. J. Tsai, H. H. Chang, C. P. Lin, “Comparison of the physical, thermal, and biological effects on implant bone site when using either zirconia or stainless-steel drill for implant bone site preparation,” Journal of the Formosan Medical Association, pp. 1-7, 2024, https://doi.org/10.1016/j.jfma.2024.01.011.
  • I. Dörsam, A. Bauroth, L. Keilig, C. Bourauel, F. Heinemann, “Definition of a drilling protocol for mini dental implants in different bone qualities,” Annals of Anatomy-Anatomischer Anzeiger, vol. 231, 151511, 2020, https://doi.org/10.1016/j.aanat.2020.151 511.
  • R. Jimbo, N. Tovar, R. B. Anchieta, L. S. Machado, C. Marin, H. S. Teixeira, P. G. Coelho, “The combined effects of undersized drilling and implant macrogeometry on bone healing around dental implants: an experimental study,” International Journal of Oral and Maxillofacial Surgery, vol. 43, no. 10, pp. 1269-1275, 2014, https://doi.org/10. 1016/j.ijom.2014.03.017.
  • S. Li, A. Abdel-Wahab, E. Demirci, V. V. Silberschmidt, “Penetration of cutting tool into cortical bone: Experimental and numerical investigation of anisotropic mechanical behaviour,” Journal of Biomechanics, vol. 47, no. 5, 2014, pp. 1117-1126, 2014, https://doi.org/10.1016/j.jbiomech.2013.12.019.
  • P. Addepalli, W. Sawangsri, S. A. C. Ghani, “A scientometric analysis of bone cutting tools & methodologies: Mapping the research landscape,” Injury, vol. 55, no. 4, 111458, 2024, https://doi.org/10.1016/j.injury.2024.111458.
  • B. Takabi, B. L. Tai, "A review of cutting mechanics and modeling techniques for biological materials," Medical Engineering & Physics, vol. 45, 2017, pp. 1-14, https://doi.org/10.1016/j. medengphy.2017.04.004.
  • L. Shu, S. Li, M. Terashima, W. Bai, T. Hanami, R. Hasegawa, N. Sugita, "A novel self-centring drill bit design for low-trauma bone drilling,” International Journal of Machine Tools and Manufacture, vol. 154, 103568, 2020, https://doi.org/10.1016/j.ijmachtools.2020.103568.
  • T. P. James, G. Chang, S. Micucci, A. Sagar, E. L. Smith, C. Cassidy, "Effect of applied force and blade speed on histopathology of bone during resection by sagittal saw,” Medical Engineering & Physics, vol. 36, no. 3, pp. 364-370, 2014, https://doi.org/10.1016/j.medengphy.2013.12.002.
  • S. Toksvig-Larsen, L. Ryd, A. Lindstrand, “Temperature influence in different orthopaedic saw blades,“ The Journal of Arthroplasty, vol. 7, no. 1, pp. 21-24, 1992, doi:10.1016/0883-5403(92)90027-n.
  • T. Mizutani, U. Satake, T. Enomoto, “Bone grinding using coarse-grained diamond wheels to suppress thermal damage,” Precision Engineering, vol. 78, pp. 163-170, 2022, https://doi.org/10.1016/j.precisioneng.2022.08.003.
  • L. Zhang, B. L. Tai, A. C. Wang, A. J. Shih, “Mist cooling in neurosurgical bone grinding,” CIRP Annals, vol. 62, no. 1, pp. 367-370, 2013, https://doi.org/10.1016/j.cirp.2013.03.125.
There are 138 citations in total.

Details

Primary Language English
Subjects Manufacturing Processes and Technologies (Excl. Textiles)
Journal Section Review Article
Authors

Yusuf Çağlar Kağıtcı 0000-0002-6544-5284

Süleyman Neşeli 0000-0003-1553-581X

Publication Date September 1, 2024
Submission Date February 1, 2024
Acceptance Date June 13, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

IEEE Y. Ç. Kağıtcı and S. Neşeli, “THE EFFECT OF CUTTING FORCES ON BONE RELATED OPERATIONAL PROCESSES: A LITERATURE REVIEW”, KONJES, vol. 12, no. 3, pp. 801–821, 2024, doi: 10.36306/konjes.1430115.