Research Article
BibTex RIS Cite

REFRACTIVE INDEX BASED DETECTION WITH A HIGH SENSITIVITY BIOSENSOR ENHANCED BY GRAPHENE

Year 2024, Volume: 12 Issue: 3, 714 - 724, 01.09.2024
https://doi.org/10.36306/konjes.1477403

Abstract

Over the past decade, optical sensors have made significant advances. An optical sensor examines the environmental impact through the change of an optical signal and offers advantages such as low cost and label-free detection. In this study, a sensor consisting of a single graphene layer and a slit positioned on the substrate is proposed. The strip gap made to improve the excitation of graphene plasmons allowed to achieve 96.2% high transmission resonance mode. This demonstrates the ability of the sensor surface to detect changing environmental conditions. The results show that the sensitivity of the sensor is 6282 nm/RIU when the sensor surface is exposed to analytes with different refractive indices. The use of a single graphene sheet eliminates the need for a metal resonator and achieves a higher sensitivity compared to some experiments recently published in the literature. Thus, the disadvantage of significant ohmic losses in metal resonators is avoided. Furthermore, a thorough discussion of various factors, including the modification of the strip gap width on the graphene layer and electrical tunability, led to the achievement of optimal sensitivity.

References

  • A. Jarahi Khameneh et al., “Trends in electrochemical biosensors for the early diagnosis of breast cancer through the detection of relevant biomarkers,” Chemical Physics Impact, vol. 8, no. September 2023, p. 100425, 2024, doi: 10.1016/j.chphi.2023.100425.
  • S. Mummareddy, S. Pradhan, A. K. Narasimhan, and A. Natarajan, “On demand biosensors for early diagnosis of cancer and immune checkpoints blockade therapy monitoring from liquid biopsy,” Biosensors (Basel), vol. 11, no. 12, 2021, doi: 10.3390/bios11120500.
  • J. Yoon, M. Shin, T. Lee, and J. W. Choi, “Highly sensitive biosensors based on biomolecules and functional nanomaterials depending on the types of nanomaterials: A perspective review,” Materials, vol. 13, no. 2, pp. 1–21, 2020, doi: 10.3390/ma13020299.
  • D. Bhatia, S. Paul, T. Acharjee, and S. S. Ramachairy, “Biosensors and their widespread impact on human health,” Sensors International, vol. 5, no. July 2023, p. 100257, 2024, doi: 10.1016/j.sintl.2023.100257.
  • N. Bontempi et al., “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale, vol. 9, no. 15, pp. 4972–4980, 2017, doi: 10.1039/c6nr07904k.
  • A. A. Smith, R. Li, and Z. T. H. Tse, “Reshaping healthcare with wearable biosensors,” Sci Rep, vol. 13, no. 1, pp. 1–16, 2023, doi: 10.1038/s41598-022-26951-z.
  • M. E. Hamza, M. A. Othman, and M. A. Swillam, “Plasmonic Biosensors: Review,” Biology (Basel), vol. 11, no. 5, 2022, doi: 10.3390/biology11050621.
  • H. Yu, Y. Peng, Y. Yang, and Z. Y. Li, “Plasmon-enhanced light–matter interactions and applications,” NPJ Comput Mater, vol. 5, no. 1, pp. 1–14, 2019, doi: 10.1038/s41524-019-0184-1.
  • H. A. Elsayed et al., “High-performance biosensors based on angular plasmonic of a multilayer design: new materials for enhancing sensitivity of one-dimensional designs,” RSC Adv, vol. 14, no. 11, pp. 7877–7890, 2024, doi: 10.1039/d3ra08731j.
  • Y. V. Stebunov, D. I. Yakubovsky, D. Y. Fedyanin, A. V. Arsenin, and V. S. Volkov, “Superior Sensitivity of Copper-Based Plasmonic Biosensors,” Langmuir, vol. 34, no. 15, pp. 4681–4687, 2018, doi: 10.1021/acs.langmuir.8b00276.
  • M. E. E. Alahi, M. I. Rizu, F. W. Tina, Z. Huang, A. Nag, and N. Afsarimanesh, “Recent Advancements in Graphene-Based Implantable Electrodes for Neural Recording/Stimulation,” Sensors, vol. 23, no. 24, 2023, doi: 10.3390/s23249911.
  • Y. Bai, T. Xu, and X. Zhang, “Graphene-based biosensors for detection of biomarkers,” Micromachines (Basel), vol. 11, no. 1, 2020, doi: 10.3390/mi11010060.
  • J. Peña-Bahamonde, H. N. Nguyen, S. K. Fanourakis, and D. F. Rodrigues, “Recent advances in graphene-based biosensor technology with applications in life sciences,” J Nanobiotechnology, vol. 16, no. 1, pp. 1–17, 2018, doi: 10.1186/s12951-018-0400-z.
  • V. B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E. R. Mbuta, and A. ullah khan, “Graphene synthesis, characterization and its applications: A review,” Results Chem, vol. 3, p. 100163, 2021, doi: 10.1016/j.rechem.2021.100163.
  • H. N. K. AL-Salman et al., “Graphene oxide-based biosensors for detection of lung cancer: A review,” Results Chem, vol. 7, no. November 2023, p. 101300, 2024, doi: 10.1016/j.rechem.2023.101300.
  • M. T. Hwang et al., “Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors,” Nat Commun, vol. 11, no. 1, 2020, doi: 10.1038/s41467-020-15330-9.
  • D. L. P. and M. F. Ashok K. Sood, Isaac Lund, Yash R. Puri, Harry Efstathiadis, Pradeep Haldar, Nibir K. Dhar, Jay Lewis, Madan Dubey, Eugene Zakar, Priyalal Wijewarnasuriya, “Review of Graphene Technology and Its Applications for Electronic Devices,” in Graphene - New Trends and Developments, 2015.
  • S. H. Oh et al., “Nanophotonic biosensors harnessing van der Waals materials,” Nat Commun, vol. 12, no. 1, pp. 1–18, 2021, doi: 10.1038/s41467-021-23564-4.
  • A. Alabastri et al., “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,” Materials, vol. 6, no. 11, pp. 4879–4910, 2013, doi: 10.3390/ma6114879.
  • S. Cynthia, R. Ahmed, S. Islam, K. Ali, and M. Hossain, “Graphene based hyperbolic metamaterial for tunable mid-infrared biosensing,” RSC Adv, vol. 11, no. 14, pp. 7938–7945, 2021, doi: 10.1039/d0ra09781k.
  • R. B. Hwang, “A theoretical design of evanescent wave biosensors based on gate-controlled graphene surface plasmon resonance,” Sci Rep, vol. 11, no. 1, pp. 1–10, 2021, doi: 10.1038/s41598-021-81595-9.
  • Y. Wu, Q. Nie, C. Tang, B. Yan, F. Liu, and M. Zhu, “Bandwidth tunability of graphene absorption enhancement by hybridization of delocalized surface plasmon polaritons and localized magnetic plasmons,” Discover Nano, vol. 19, no. 1, 2024, doi: 10.1186/s11671-024-03961-6.
  • Y. Liang, M. Lu, S. Chu, L. Li, and W. Peng, “Tunable Plasmonic Resonances in the Hexagonal Nanoarrays of Annular Aperture for Biosensing,” Plasmonics, vol. 11, no. 1, pp. 205–212, 2016, doi: 10.1007/s11468-015-0041-0.
  • M. R. Rakhshani and M. A. Mansouri-Birjandi, “Utilizing the Metallic Nano-Rods in Hexagonal Configuration to Enhance Sensitivity of the Plasmonic Racetrack Resonator in Sensing Application,” Plasmonics, vol. 12, no. 4, pp. 999–1006, 2017, doi: 10.1007/s11468-016-0351-x.
  • Z. Zhang et al., “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors (Switzerland), vol. 18, no. 1, 2018, doi: 10.3390/s18010116.
  • H. Yang et al., “High-sensitivity plasmonics biosensor based on graphene ribbon arrays,” 2019 7th International Conference on Information, Communication and Networks, ICICN 2019, pp. 105–108, 2019, doi: 10.1109/ICICN.2019.8834950.
  • M. R. Rakhshani, “Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups,” Photonics Nanostruct, vol. 39, no. August 2019, p. 100768, 2020, doi: 10.1016/j.photonics.2020.100768.
  • L. Hajshahvaladi, H. Kaatuzian, and M. Danaie, “A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution,” Opt Commun, vol. 502, no. August 2021, p. 127421, 2022, doi: 10.1016/j.optcom.2021.127421.
  • M. Irfan, Y. Khan, A. U. Rehman, M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Plasmonic Refractive Index and Temperature Sensor Based on Graphene and LiNbO3,” Sensors, vol. 22, no. 20, 2022, doi: 10.3390/s22207790.
  • S. K. Patel, J. Surve, J. Parmar, K. Aliqab, M. Alsharari, and A. Armghan, “SARS-CoV-2 detecting rapid metasurface-based sensor,” Diam Relat Mater, vol. 132, no. November 2022, p. 109644, 2023, doi: 10.1016/j.diamond.2022.109644.
Year 2024, Volume: 12 Issue: 3, 714 - 724, 01.09.2024
https://doi.org/10.36306/konjes.1477403

Abstract

References

  • A. Jarahi Khameneh et al., “Trends in electrochemical biosensors for the early diagnosis of breast cancer through the detection of relevant biomarkers,” Chemical Physics Impact, vol. 8, no. September 2023, p. 100425, 2024, doi: 10.1016/j.chphi.2023.100425.
  • S. Mummareddy, S. Pradhan, A. K. Narasimhan, and A. Natarajan, “On demand biosensors for early diagnosis of cancer and immune checkpoints blockade therapy monitoring from liquid biopsy,” Biosensors (Basel), vol. 11, no. 12, 2021, doi: 10.3390/bios11120500.
  • J. Yoon, M. Shin, T. Lee, and J. W. Choi, “Highly sensitive biosensors based on biomolecules and functional nanomaterials depending on the types of nanomaterials: A perspective review,” Materials, vol. 13, no. 2, pp. 1–21, 2020, doi: 10.3390/ma13020299.
  • D. Bhatia, S. Paul, T. Acharjee, and S. S. Ramachairy, “Biosensors and their widespread impact on human health,” Sensors International, vol. 5, no. July 2023, p. 100257, 2024, doi: 10.1016/j.sintl.2023.100257.
  • N. Bontempi et al., “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale, vol. 9, no. 15, pp. 4972–4980, 2017, doi: 10.1039/c6nr07904k.
  • A. A. Smith, R. Li, and Z. T. H. Tse, “Reshaping healthcare with wearable biosensors,” Sci Rep, vol. 13, no. 1, pp. 1–16, 2023, doi: 10.1038/s41598-022-26951-z.
  • M. E. Hamza, M. A. Othman, and M. A. Swillam, “Plasmonic Biosensors: Review,” Biology (Basel), vol. 11, no. 5, 2022, doi: 10.3390/biology11050621.
  • H. Yu, Y. Peng, Y. Yang, and Z. Y. Li, “Plasmon-enhanced light–matter interactions and applications,” NPJ Comput Mater, vol. 5, no. 1, pp. 1–14, 2019, doi: 10.1038/s41524-019-0184-1.
  • H. A. Elsayed et al., “High-performance biosensors based on angular plasmonic of a multilayer design: new materials for enhancing sensitivity of one-dimensional designs,” RSC Adv, vol. 14, no. 11, pp. 7877–7890, 2024, doi: 10.1039/d3ra08731j.
  • Y. V. Stebunov, D. I. Yakubovsky, D. Y. Fedyanin, A. V. Arsenin, and V. S. Volkov, “Superior Sensitivity of Copper-Based Plasmonic Biosensors,” Langmuir, vol. 34, no. 15, pp. 4681–4687, 2018, doi: 10.1021/acs.langmuir.8b00276.
  • M. E. E. Alahi, M. I. Rizu, F. W. Tina, Z. Huang, A. Nag, and N. Afsarimanesh, “Recent Advancements in Graphene-Based Implantable Electrodes for Neural Recording/Stimulation,” Sensors, vol. 23, no. 24, 2023, doi: 10.3390/s23249911.
  • Y. Bai, T. Xu, and X. Zhang, “Graphene-based biosensors for detection of biomarkers,” Micromachines (Basel), vol. 11, no. 1, 2020, doi: 10.3390/mi11010060.
  • J. Peña-Bahamonde, H. N. Nguyen, S. K. Fanourakis, and D. F. Rodrigues, “Recent advances in graphene-based biosensor technology with applications in life sciences,” J Nanobiotechnology, vol. 16, no. 1, pp. 1–17, 2018, doi: 10.1186/s12951-018-0400-z.
  • V. B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E. R. Mbuta, and A. ullah khan, “Graphene synthesis, characterization and its applications: A review,” Results Chem, vol. 3, p. 100163, 2021, doi: 10.1016/j.rechem.2021.100163.
  • H. N. K. AL-Salman et al., “Graphene oxide-based biosensors for detection of lung cancer: A review,” Results Chem, vol. 7, no. November 2023, p. 101300, 2024, doi: 10.1016/j.rechem.2023.101300.
  • M. T. Hwang et al., “Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors,” Nat Commun, vol. 11, no. 1, 2020, doi: 10.1038/s41467-020-15330-9.
  • D. L. P. and M. F. Ashok K. Sood, Isaac Lund, Yash R. Puri, Harry Efstathiadis, Pradeep Haldar, Nibir K. Dhar, Jay Lewis, Madan Dubey, Eugene Zakar, Priyalal Wijewarnasuriya, “Review of Graphene Technology and Its Applications for Electronic Devices,” in Graphene - New Trends and Developments, 2015.
  • S. H. Oh et al., “Nanophotonic biosensors harnessing van der Waals materials,” Nat Commun, vol. 12, no. 1, pp. 1–18, 2021, doi: 10.1038/s41467-021-23564-4.
  • A. Alabastri et al., “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,” Materials, vol. 6, no. 11, pp. 4879–4910, 2013, doi: 10.3390/ma6114879.
  • S. Cynthia, R. Ahmed, S. Islam, K. Ali, and M. Hossain, “Graphene based hyperbolic metamaterial for tunable mid-infrared biosensing,” RSC Adv, vol. 11, no. 14, pp. 7938–7945, 2021, doi: 10.1039/d0ra09781k.
  • R. B. Hwang, “A theoretical design of evanescent wave biosensors based on gate-controlled graphene surface plasmon resonance,” Sci Rep, vol. 11, no. 1, pp. 1–10, 2021, doi: 10.1038/s41598-021-81595-9.
  • Y. Wu, Q. Nie, C. Tang, B. Yan, F. Liu, and M. Zhu, “Bandwidth tunability of graphene absorption enhancement by hybridization of delocalized surface plasmon polaritons and localized magnetic plasmons,” Discover Nano, vol. 19, no. 1, 2024, doi: 10.1186/s11671-024-03961-6.
  • Y. Liang, M. Lu, S. Chu, L. Li, and W. Peng, “Tunable Plasmonic Resonances in the Hexagonal Nanoarrays of Annular Aperture for Biosensing,” Plasmonics, vol. 11, no. 1, pp. 205–212, 2016, doi: 10.1007/s11468-015-0041-0.
  • M. R. Rakhshani and M. A. Mansouri-Birjandi, “Utilizing the Metallic Nano-Rods in Hexagonal Configuration to Enhance Sensitivity of the Plasmonic Racetrack Resonator in Sensing Application,” Plasmonics, vol. 12, no. 4, pp. 999–1006, 2017, doi: 10.1007/s11468-016-0351-x.
  • Z. Zhang et al., “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors (Switzerland), vol. 18, no. 1, 2018, doi: 10.3390/s18010116.
  • H. Yang et al., “High-sensitivity plasmonics biosensor based on graphene ribbon arrays,” 2019 7th International Conference on Information, Communication and Networks, ICICN 2019, pp. 105–108, 2019, doi: 10.1109/ICICN.2019.8834950.
  • M. R. Rakhshani, “Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups,” Photonics Nanostruct, vol. 39, no. August 2019, p. 100768, 2020, doi: 10.1016/j.photonics.2020.100768.
  • L. Hajshahvaladi, H. Kaatuzian, and M. Danaie, “A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution,” Opt Commun, vol. 502, no. August 2021, p. 127421, 2022, doi: 10.1016/j.optcom.2021.127421.
  • M. Irfan, Y. Khan, A. U. Rehman, M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Plasmonic Refractive Index and Temperature Sensor Based on Graphene and LiNbO3,” Sensors, vol. 22, no. 20, 2022, doi: 10.3390/s22207790.
  • S. K. Patel, J. Surve, J. Parmar, K. Aliqab, M. Alsharari, and A. Armghan, “SARS-CoV-2 detecting rapid metasurface-based sensor,” Diam Relat Mater, vol. 132, no. November 2022, p. 109644, 2023, doi: 10.1016/j.diamond.2022.109644.
There are 30 citations in total.

Details

Primary Language English
Subjects Photonic and Electro-Optical Devices, Sensors and Systems (Excl. Communications), Electronics, Sensors and Digital Hardware (Other)
Journal Section Research Article
Authors

Ahmet Murat Erturan 0000-0001-7328-644X

Seyfettin Sinan Gültekin 0000-0002-6287-9124

Publication Date September 1, 2024
Submission Date May 2, 2024
Acceptance Date July 28, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

IEEE A. M. Erturan and S. S. Gültekin, “REFRACTIVE INDEX BASED DETECTION WITH A HIGH SENSITIVITY BIOSENSOR ENHANCED BY GRAPHENE”, KONJES, vol. 12, no. 3, pp. 714–724, 2024, doi: 10.36306/konjes.1477403.