Research Article
BibTex RIS Cite

OPTIMIZING WASTE HEAT RECOVERY FROM SOLAR COAL GASIFICATION: A COMPARATIVE STUDY OF ORC SYSTEMS USING VARIOUS REFRIGERANTS

Year 2024, Volume: 12 Issue: 4, 886 - 907, 01.12.2024
https://doi.org/10.36306/konjes.1461129

Abstract

In this study, it is aimed to recover the waste heat released as a result of coal gasification and gasification with a solar reactor heat source, with an ORC integrated into the reactor. Thermodynamic analyzes for the integrated system were carried out for a solar reactor (black body solar cavity—receiver) exposed to an average solar flux concentration of 2000 and operating at 1350 K. Assumptions are given for the calculations made in both the gasification reactor and the ORC, and the results are presented in tables and graphs. In the reactor and ORC integrated design, the operation of the integrated ORC sub-cycle with high critical temperature refrigerants (R600, R113, R227ea, R365mfa, R600a, and R123) to recover the heat lost by the Q ̇uencher (evaporator) in the reactor was investigated. In this designed system, the thermodynamic analysis of the selected refrigerants for ORC was made with the EES software (Engineering Equation Solver). In the ORC system, the best energy and exergy efficiency were obtained for R123 fluid (13.93% and 11.14%), respectively.

References

  • Türkiye Kömür İşletmeleri Kurumu, "Temiz Kömür Teknolojileri", Erişim Tarihi: [07.07.2019], https://www.tki.gov.tr/temiz-komur-teknolojileri
  • E. Hacıoğlu and M. Ece, “Kömürün Gazlaştırılması”, Erişim Tarihi: [07.07.2019], https://www.geocities.ws/naci_kucukkaya/komur.htm
  • L. Pierobon, M. Rokni, U. Larsen and F. Haglind, “Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle.” Renewable Energy, 60, 226-234. 2013.
  • O. J. Ogorure, F. Heberle and D. Brüggemann, “Thermodynamic analysis of a combined Organic Rankine Cycle (ORC) with Proton Exchange Membrane Electrolyzer (PEME) in an integrated biomass conversion system.” In Proceedings of the 6th International Seminar on ORC Power Systems. 2021.
  • J. Chen, W. Xu, F. Zhang, H. Zuo, E. Jiaqiang, K. Wei and Y. Fan, “Thermodynamic and environmental analysis of integrated supercritical water gasification of coal for power and hydrogen production.” Energy Conversion and Management, 198, 111927. 2019.
  • S. S. Seyitoglu, I. Dincer and A. J. I. J. O. H. E. Kilicarslan, “Energy and exergy analyses of hydrogen production by coal gasification.” International Journal of Hydrogen Energy, 42(4), 2592-2600. 2017.
  • L. E. Méndez-Cruz, M. Á. Gutiérrez-Limón, H. Lugo-Méndez, R. Lugo-Leyte, T. Lopez-Arenas and M. Sales-Cruz, “Comparative Thermodynamic Analysis of the Performance of an Organic Rankine Cycle Using Different Working Fluids.” Energies, 15(7), 2588. 2022.
  • Kılıç, B., & Arabacı, E. (2019). Alternative approach in performance analysis of organic rankine cycle (ORC). Environmental Progress & Sustainable Energy, 38(1), 254-259.
  • Khatoon, S., Almefreji, N. M. A., & Kim, M. H. (2021). Thermodynamic study of a combined power and refrigeration system for low-grade heat energy source. Energies, 14(2), 410.
  • Chowdhury, J. I., Asfand, F., Hu, Y., Balta-Ozkan, N., Varga, L., & Patchigolla, K. (2019, January). Waste heat recovery potential from industrial bakery ovens using thermodynamic power cycles. In ECOS 2019-Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (pp. 2435-2441). Institute of Thermal Technology.
  • Jeong, J., & Kang, Y. T. (2004). Analysis of a refrigeration cycle driven by refrigerant steam turbine. International journal of refrigeration, 27(1), 33-41.
  • Sun, X., Liu, L., Zhang, T., & Dai, Y. (2024). Multi-objective optimization of a Rectisol process integrated with compression-absorption cascade refrigeration system and ORC for waste heat recovery. Applied Thermal Engineering, 244, 122611.
  • Rad, H. N., Ghasemi, A., & Marefati, M. (2024). Cost and environmental analysis and optimization of a new and green three-level waste heat recovery-based cogeneration cycle: A comparative study. Heliyon, 10(7).
  • Tera, I., Zhang, S., & Liu, G. (2024). A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment. Energy, 295, 131015.
  • Braimakis, K. (2024). Mapping the waste heat recovery potential of CO2 intercooling compression via ORC. International Journal of Refrigeration, 159, 309-332.
  • Choudhary, N. K., Deep, A. P., & Karmakar, S. (2024). Thermodynamic Analysis of Integrated Gasification Combined Cycle Integrated with Organic Rankine Cycle for Waste Heat Utilization. Waste and Biomass Valorization, 1-19.
  • Aryanfar, Y., Mohtaram, S., Alcaraz, J. L. G., & Sun, H. (2023). Energy and exergy assessment and a competitive study of a two-stage ORC for recovering SFGC waste heat and LNG cold energy. Energy, 264, 126191.
  • Li, L., Qian, J., Teng, S., Zhang, Y., Yin, J., & Zhou, Q. (2023). Comparative analysis and optimization of waste-heat recovery systems with large-temperature-gradient heat transfer. Applied Thermal Engineering, 234, 121179.
  • Yan, L., Liu, J., Ying, G., & Zhang, N. (2023). Simulation analysis of flue gas waste heat utilization retrofit based on ORC system. Energy Eng, 120, 1919-38.
  • Ja'fari, M., Khan, M. I., Al-Ghamdi, S. G., Jaworski, A. J., & Asfand, F. (2023). Waste heat recovery in iron and steel industry using organic Rankine cycles. Chemical Engineering Journal, 146925.
  • Mahmoud, M., Naher, S., Ramadan, M., Abdelkareem, M. A., Jaber, H., & Olabi, A. G. (2023). Investigation of a ground-cooled organic Rankine cycle for waste heat recovery. International Journal of Thermofluids, 18, 100348.
  • Cui, F., An, D., Teng, S., Lin, X., Li, D., & Xi, H. (2023). Cogeneration systems of solar energy integrated with compressed air energy storage systems: A comparative study of various energy recovery strategies. Case Studies in Thermal Engineering, 51, 103521.
  • Y. A. Cengel and Boles M.A. Boles, “Thermodynamics: an engineering approach.” McGraw-Hill New York; 2011.
  • I, Dincer and M. A. Rosen, “Exergy: energy, environment and sustainable development.” Elsevier Science; 2012.
  • A. Steinfeld and P. V. Zedtwitz, “The Solar Thermal Gasification of Coal- Energy Conversion Efficiency and CO2 Mitigation Potential”.Energy, Switzerland. 2003.
  • Z. K. Telli, “Yakıtlar ve Yanma”, Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Yayınları, Yayın No:17, Isparta. 1984.
  • P. V. Zedtwitz and A. Steinfeld, “The Solar Thermal Gasification of Coal- Energy Conversion Efficiency and CO2 Mitigation Potential”. Energy, Switzerland. 2003
  • Klein SA. Engineering Equation Solver(EES), F-Chart Software, Version 10.835-3D. 2020
  • İ. Üçgül and T. Koyun, “Theoretical Investigation of Solar Gasification of Different Types of Lignite Coal.” Yekarum, 4(1), 7-15. 2019.
  • M. Shoaei, A. Hajinezhad, and S. F. Moosavian, "Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources," Energy, vol. 280, p. 128162, 2023.
Year 2024, Volume: 12 Issue: 4, 886 - 907, 01.12.2024
https://doi.org/10.36306/konjes.1461129

Abstract

References

  • Türkiye Kömür İşletmeleri Kurumu, "Temiz Kömür Teknolojileri", Erişim Tarihi: [07.07.2019], https://www.tki.gov.tr/temiz-komur-teknolojileri
  • E. Hacıoğlu and M. Ece, “Kömürün Gazlaştırılması”, Erişim Tarihi: [07.07.2019], https://www.geocities.ws/naci_kucukkaya/komur.htm
  • L. Pierobon, M. Rokni, U. Larsen and F. Haglind, “Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle.” Renewable Energy, 60, 226-234. 2013.
  • O. J. Ogorure, F. Heberle and D. Brüggemann, “Thermodynamic analysis of a combined Organic Rankine Cycle (ORC) with Proton Exchange Membrane Electrolyzer (PEME) in an integrated biomass conversion system.” In Proceedings of the 6th International Seminar on ORC Power Systems. 2021.
  • J. Chen, W. Xu, F. Zhang, H. Zuo, E. Jiaqiang, K. Wei and Y. Fan, “Thermodynamic and environmental analysis of integrated supercritical water gasification of coal for power and hydrogen production.” Energy Conversion and Management, 198, 111927. 2019.
  • S. S. Seyitoglu, I. Dincer and A. J. I. J. O. H. E. Kilicarslan, “Energy and exergy analyses of hydrogen production by coal gasification.” International Journal of Hydrogen Energy, 42(4), 2592-2600. 2017.
  • L. E. Méndez-Cruz, M. Á. Gutiérrez-Limón, H. Lugo-Méndez, R. Lugo-Leyte, T. Lopez-Arenas and M. Sales-Cruz, “Comparative Thermodynamic Analysis of the Performance of an Organic Rankine Cycle Using Different Working Fluids.” Energies, 15(7), 2588. 2022.
  • Kılıç, B., & Arabacı, E. (2019). Alternative approach in performance analysis of organic rankine cycle (ORC). Environmental Progress & Sustainable Energy, 38(1), 254-259.
  • Khatoon, S., Almefreji, N. M. A., & Kim, M. H. (2021). Thermodynamic study of a combined power and refrigeration system for low-grade heat energy source. Energies, 14(2), 410.
  • Chowdhury, J. I., Asfand, F., Hu, Y., Balta-Ozkan, N., Varga, L., & Patchigolla, K. (2019, January). Waste heat recovery potential from industrial bakery ovens using thermodynamic power cycles. In ECOS 2019-Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (pp. 2435-2441). Institute of Thermal Technology.
  • Jeong, J., & Kang, Y. T. (2004). Analysis of a refrigeration cycle driven by refrigerant steam turbine. International journal of refrigeration, 27(1), 33-41.
  • Sun, X., Liu, L., Zhang, T., & Dai, Y. (2024). Multi-objective optimization of a Rectisol process integrated with compression-absorption cascade refrigeration system and ORC for waste heat recovery. Applied Thermal Engineering, 244, 122611.
  • Rad, H. N., Ghasemi, A., & Marefati, M. (2024). Cost and environmental analysis and optimization of a new and green three-level waste heat recovery-based cogeneration cycle: A comparative study. Heliyon, 10(7).
  • Tera, I., Zhang, S., & Liu, G. (2024). A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment. Energy, 295, 131015.
  • Braimakis, K. (2024). Mapping the waste heat recovery potential of CO2 intercooling compression via ORC. International Journal of Refrigeration, 159, 309-332.
  • Choudhary, N. K., Deep, A. P., & Karmakar, S. (2024). Thermodynamic Analysis of Integrated Gasification Combined Cycle Integrated with Organic Rankine Cycle for Waste Heat Utilization. Waste and Biomass Valorization, 1-19.
  • Aryanfar, Y., Mohtaram, S., Alcaraz, J. L. G., & Sun, H. (2023). Energy and exergy assessment and a competitive study of a two-stage ORC for recovering SFGC waste heat and LNG cold energy. Energy, 264, 126191.
  • Li, L., Qian, J., Teng, S., Zhang, Y., Yin, J., & Zhou, Q. (2023). Comparative analysis and optimization of waste-heat recovery systems with large-temperature-gradient heat transfer. Applied Thermal Engineering, 234, 121179.
  • Yan, L., Liu, J., Ying, G., & Zhang, N. (2023). Simulation analysis of flue gas waste heat utilization retrofit based on ORC system. Energy Eng, 120, 1919-38.
  • Ja'fari, M., Khan, M. I., Al-Ghamdi, S. G., Jaworski, A. J., & Asfand, F. (2023). Waste heat recovery in iron and steel industry using organic Rankine cycles. Chemical Engineering Journal, 146925.
  • Mahmoud, M., Naher, S., Ramadan, M., Abdelkareem, M. A., Jaber, H., & Olabi, A. G. (2023). Investigation of a ground-cooled organic Rankine cycle for waste heat recovery. International Journal of Thermofluids, 18, 100348.
  • Cui, F., An, D., Teng, S., Lin, X., Li, D., & Xi, H. (2023). Cogeneration systems of solar energy integrated with compressed air energy storage systems: A comparative study of various energy recovery strategies. Case Studies in Thermal Engineering, 51, 103521.
  • Y. A. Cengel and Boles M.A. Boles, “Thermodynamics: an engineering approach.” McGraw-Hill New York; 2011.
  • I, Dincer and M. A. Rosen, “Exergy: energy, environment and sustainable development.” Elsevier Science; 2012.
  • A. Steinfeld and P. V. Zedtwitz, “The Solar Thermal Gasification of Coal- Energy Conversion Efficiency and CO2 Mitigation Potential”.Energy, Switzerland. 2003.
  • Z. K. Telli, “Yakıtlar ve Yanma”, Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Yayınları, Yayın No:17, Isparta. 1984.
  • P. V. Zedtwitz and A. Steinfeld, “The Solar Thermal Gasification of Coal- Energy Conversion Efficiency and CO2 Mitigation Potential”. Energy, Switzerland. 2003
  • Klein SA. Engineering Equation Solver(EES), F-Chart Software, Version 10.835-3D. 2020
  • İ. Üçgül and T. Koyun, “Theoretical Investigation of Solar Gasification of Different Types of Lignite Coal.” Yekarum, 4(1), 7-15. 2019.
  • M. Shoaei, A. Hajinezhad, and S. F. Moosavian, "Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources," Energy, vol. 280, p. 128162, 2023.
There are 30 citations in total.

Details

Primary Language English
Subjects Energy, Renewable Energy Resources , Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Article
Authors

Tansel Koyun 0000-0002-5625-2413

Ahmet Elbir 0000-0001-8934-7665

İbrahim Üçgül 0000-0001-9794-0653

Publication Date December 1, 2024
Submission Date March 29, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

IEEE T. Koyun, A. Elbir, and İ. Üçgül, “OPTIMIZING WASTE HEAT RECOVERY FROM SOLAR COAL GASIFICATION: A COMPARATIVE STUDY OF ORC SYSTEMS USING VARIOUS REFRIGERANTS”, KONJES, vol. 12, no. 4, pp. 886–907, 2024, doi: 10.36306/konjes.1461129.