ONLINE MEASUREMENT OF FLOUR PARTICLE SIZE DISTRIBUTION USING PIEZOELECTRIC SENSOR
Year 2024,
Volume: 12 Issue: 4, 941 - 954, 01.12.2024
Nihat Çankaya
Abstract
Obtaining the ideal particle size is a vital factor in dust processes, from turning wheat into flour to cement and calcite production. However, the technology to measure particle size instantaneously during the production phase is still an area under development. These measurements made with electro-optical methods have limited use in industry due to their difficulties and excessive costs. Studies conducted with innovative acoustic emission sensors offer new hopes in particle size detection. These sensors can successfully measure the dimensions of a wide range of materials, from coal dust to metal powders to grass particles. Our study shows that these sensors can also measure the size of light flour particles instantaneously. Using developed method, the dimensions of five types of flour mixtures in the size ranges of 0-80 µm, 80-118 µm, 118-150 µm, 150-180 µm and 180-212 µm could be measured and classified with 100% success. Considering its potential to increase the efficiency of the milling process, this technology could revolutionize the milling industry.
Ethical Statement
Authors declare that they comply with all scientific ethical rules, including authorship, citation, and accuracy of data.
Supporting Institution
TUBITAK
References
- N. Çankaya and M. Özcan, “Performance optimization and improvement of dust laden air by dynamic control method for jet pulsed filters,” Advanced Powder Technology, vol. 30, no. 7, pp. 1366–1377, Jul. 2019, doi: https://doi.org/10.1016/j.apt.2019.04.014.
- A. Akkaş and M. Özcan, “Askılı Kumlama Makinesinin PLC İle Kontrolü Sayesinde Elde Edilen Kazanımlar,” 2019. Accessed: Mar. 30, 2024. [Online]. Available: https://dergipark.org.tr/tr/download/article-file/878177
- Mehmet HACIBEYOGLU, Merve ÇELİK, and Özlem ERDAŞ ÇİÇEK, “K En Yakın Komşu Algoritması ile Binalarda Enerji Verimliliği Tahmini,” Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri dergisi, Dec. 2023, doi: https://doi.org/10.47112/neufmbd.2023.10.
- Fatih ÖZEN, Rana ORTAÇ KABAOĞLU, and Tarık Veli MUMCU, “Deep Learning Based Temperature and Humidity Prediction,” Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri dergisi, Dec. 2023, doi: https://doi.org/10.47112/neufmbd.2023.20.
- Muhammet Emre Irmak and İbrahim Berkan Aydilek, “Hava Kalite İndeksinin Tahmin Başarısının Artırılması için Topluluk Regresyon Algoritmalarının Kullanılması,” Academic platform-Journal of engineering and science, pp. 507–514, Sep. 2019, doi: https://doi.org/10.21541/apjes.478038.
- M. Bilgili, A. Ozbek, B. Sahin, and A. Kahraman, “An overview of renewable electric power capacity and progress in new technologies in the world,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 323–334, Sep. 2015, doi: https://doi.org/10.1016/j.rser.2015.04.148.
- M. Karakoyun et al., “Fen ve Mühendislik Bilimleri Dergisi Transfer Fonksiyonları Kullanarak İkili Güve-Alev Optimizasyonu Algoritmalarının Geliştirilmesi ve Performanslarının Karşılaştırılması Development of Binary Moth-Flame Optimization Algorithms using Transfer Functions and Their Performance Comparison,” 2021. Accessed: Mar. 20, 2024. [Online]. Available: https://dergipark.org.tr/tr/download/article-file/1973003
- Barış GÖKÇE and Osman Bahadır ÖZDEN, “Kaynaklı Bağlantıya Sahip Karmaşık Bir Yapıda Goldak Modeli Kullanılarak Distorsiyonların ve Kalıntı Gerilmelerin Nümerik Analizler ile Belirlenmesi,” Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri dergisi, Dec. 2023, doi: https://doi.org/10.47112/neufmbd.2023.9.
- M. S. Endiz and R. Akkaya, “Yarı Empedans Kaynaklı İnverterlerde Farklı PWM Kontrol Tekniklerinin Performans Etkisinin İncelenmesi,” Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 2, no. 1, pp. 12–26, Jun. 2020, Accessed: Mar. 20, 2024. [Online]. Available: https://dergipark.org.tr/tr/pub/neufmbd/issue/55688/691719
- W. Qian, W. Yang, Y. Zhang, C. R. Bowen, and Y. Yang, “Piezoelectric Materials for Controlling Electro-Chemical Processes,” Nano-Micro Letters, vol. 12, no. 1, Jul. 2020, doi: https://doi.org/10.1007/s40820-020-00489-z.
- P. Eltouby, I. Shyha, C. Li, and J. Khaliq, “Factors affecting the piezoelectric performance of ceramic-polymer composites: A comprehensive review,” Ceramics International, vol. 47, no. 13, pp. 17813–17825, Jul. 2021, doi: https://doi.org/10.1016/j.ceramint.2021.03.126.
- J. Enrico et al., “Stretchable piezoelectric elastic composites for sensors and energy generators,” Composites Part B: Engineering, vol. 198, pp. 108211–108211, Oct. 2020, doi: https://doi.org/10.1016/j.compositesb.2020.108211.
- A. Aabid et al., “A Systematic Review of Piezoelectric Materials and Energy Harvesters for Industrial Applications,” Sensors, vol. 21, no. 12, p. 4145, Jun. 2021, doi: https://doi.org/10.3390/s21124145.
- N. Sezer and M. Koç, “A comprehensive review on the state-of-the-art of piezoelectric energy harvesting,” Nano Energy, vol. 80, p. 105567, Feb. 2021, doi: https://doi.org/10.1016/j.nanoen.2020.105567.
- Çiftçi B. Ç., G. Kaya, and M. Kurt, “Analysis of Acoustic Signals of Footsteps from the Piezoelectric Sensor,” Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 4, pp. 931–937, Dec. 2023, doi: https://doi.org/10.28979/jarnas.1307466.
- M. Strantza, D. Van Hemelrijck, P. Guillaume, and D. G. Aggelis, “Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components,” Mechanics Research Communications, vol. 84, pp. 8–13, Sep. 2017, doi: https://doi.org/10.1016/j.mechrescom.2017.05.009.
- W. Mu, Y. Gao, Y. Wang, G. Liu, and H. Hu, “Modeling and Analysis of Acoustic Emission Generated by Fatigue Cracking,” Sensors, vol. 22, no. 3, pp. 1208–1208, Feb. 2022, doi: https://doi.org/10.3390/s22031208.
- T. I. Khan, A. A. Rashid, and T. Nanami, “Theoretical and experimental analysis of acoustic emission signal for resonant sensor on homogenous material,” Sensing and Bio-Sensing Research, vol. 39, p. 100550, Feb. 2023, doi: https://doi.org/10.1016/j.sbsr.2023.100550.
- M. A. Aulestia, R. Gotz, Paulo, F. A. Alexandre, B. O. Fernandez, and Pedro Oliveira Junior, “A Low-Cost Acoustic Emission Sensor based on Piezoelectric Diaphragm,” IEEE Sensors Journal, pp. 1–1, Jan. 2020, doi: https://doi.org/10.1109/jsen.2020.2988478.
- N. Chamankar, R. Khajavi, A. A. Yousefi, A. Rashidi, and F. Golestanifard, “A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications,” Ceramics International, vol. 46, no. 12, pp. 19669–19681, Aug. 2020, doi: https://doi.org/10.1016/j.ceramint.2020.03.210.
- Ata Meshkinzar and A. M. Al-Jumaily, “Cylindrical Piezoelectric PZT Transducers for Sensing and Actuation,” Sensors, vol. 23, no. 6, pp. 3042–3042, Mar. 2023, doi: https://doi.org/10.3390/s23063042.
- R. Ali and M. Prasad, “Piezoelectric MEMS based acoustic sensors: A review,” Sensors and Actuators A: Physical, vol. 301, p. 111756, Jan. 2020, doi: https://doi.org/10.1016/j.sna.2019.111756.
- M. Abud, Mohanad Azzawi, and Hawazen Alnaqeeb, “A New Technique for Measuring Laser Pulse Energy Using PZT/SiO2,” Journal of applied sciences and nanotechnology, vol. 3, no. 2, pp. 87–96, Jun. 2023, doi: https://doi.org/10.53293/jasn.2023.6122.1197.
- Park and J. Won, “Piezoelectric bedload impact sensor (PBIS) for particle size distribution.,” Sep. 2015, doi: https://doi.org/10.18297/etd/1095.
- M. Hayashi, Takuya Kikkawa, D. Koyama, and M. Matsukawa, “Piezoelectric particle sizer for measuring bed load using a combination of resonance vibration modes,” Sensors and Actuators A: Physical, vol. 267, pp. 150–155, Nov. 2017, doi: https://doi.org/10.1016/j.sna.2017.09.057.
- J.-F. Capsal, C. David, E. Dantras, and C. Lacabanne, “Piezoelectric sensing coating for real time impact detection and location on aircraft structures,” Smart Materials and Structures, vol. 21, no. 5, p. 055021, May 2012, doi: https://doi.org/10.1088/0964-1726/21/5/055021.
- P. J. Coghill, “Particle Size of Pneumatically Conveyed Powders Measured Using Impact Duration,” Particle & Particle Systems Characterization, vol. 24, no. 6, pp. 464–469, Dec. 2007, doi: https://doi.org/10.1002/ppsc.200601080.
- A. Boschetto and F. Quadrini, “Powder size measurement by acoustic emission,” Measurement, vol. 44, no. 1, pp. 290–297, Jan. 2011, doi: https://doi.org/10.1016/j.measurement.2010.10.005.
- M. Uher and P. Benes, “Measurement of particle size distribution by the use of acoustic emission method,” May 2012, doi: https://doi.org/10.1109/i2mtc.2012.6229375.
- L. Gao, Y. Yan, R. M. Carter, D. Sun, P. Lee, and C. Xu, “On-line particle sizing of pneumatically conveyed biomass particles using piezoelectric sensors,” Fuel, vol. 113, pp. 810–816, Nov. 2013, doi: https://doi.org/10.1016/j.fuel.2012.12.029.
- Y. Hu, X. Huang, X. Qian, L. Gao, and Y. Yan, “Online particle size measurement through acoustic emission detection and signal analysis,” May 2014, doi: https://doi.org/10.1109/i2mtc.2014.6860883.
- M. Kobayashi, T. Miyachi, M. Hattori, S. Sugita, S. Takechi, and N. Okada, “Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement,” Earth, Planets and Space, vol. 65, no. 3, pp. 167–173, Mar. 2013, doi: https://doi.org/10.5047/eps.2012.08.011.
- James Robert Coombes and Y. Yan, “Experimental investigations into the use of piezoelectric film transducers to determine particle size through impact analysis,” Kent Academic Repository (University of Kent), May 2016, doi: https://doi.org/10.1109/i2mtc.2016.7520464.
- G. Zhang, Y. Yan, Y. Hu, and G. Zheng, “On-line size measurement of pneumatically conveyed particles through acoustic emission sensing,” Powder Technology, vol. 353, pp. 195–201, Jul. 2019, doi: https://doi.org/10.1016/j.powtec.2019.05.023.
- G. Zheng, Y. Yan, Y. Hu, and W. Zhang, “Online Measurement of the Size Distribution of Pneumatically Conveyed Particles Through Acoustic Emission Detection and Triboelectric Sensing,” IEEE transactions on instrumentation and measurement, vol. 70, pp. 1–17, Jan. 2021, doi: https://doi.org/10.1109/tim.2021.3062407.
- G. Zhang, Y. Yan, Y. Hu, and G. Zheng, “Investigations into the sensing mechanism of acoustic emission sensors for particle size measurement in a particular case: normal incidence,” Measurement science & technology, vol. 32, no. 7, pp. 075107–075107, May 2021, doi: https://doi.org/10.1088/1361-6501/abe338.
- E. Nsugbe, A. Starr, I. Jennions, and C. R. Carcel, “Particle Size Distribution Estimation of A Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions,” Procedia Manufacturing, vol. 11, pp. 2252–2259, 2017, doi: https://doi.org/10.1016/j.promfg.2017.07.373.
- N. Çankaya, “Deriving Power Consumption Models from Energy Bills for Optimal Sizing of Hybrid Power in Commercial Buildings,” IEEE Access, 2024, doi: https://doi.org/10.1109/ACCESS.2024.3444710