Research Article
BibTex RIS Cite

Year 2025, Volume: 13 Issue: 2, 524 - 534, 01.06.2025
https://doi.org/10.36306/konjes.1596875

Abstract

Project Number

231004004

References

  • W. L. Baloch, H. Siad, M. Lachemi, and M. Sahmaran, “The role of supplementary cementitious materials and fiber reinforcements in enhancing the sulfate attack resistance of SCC/ECC composite systems,” Constr Build Mater, vol. 423, p. 135821, 2024, doi: https://doi.org/10.1016/j.conbuildmat.2024.135821.
  • X. Lv, L. Yang, J. Li, and F. Wang, “Roles of fly ash, granulated blast-furnace slag, and silica fume in long-term resistance to external sulfate attacks at atmospheric temperature,” Cem Concr Compos, vol. 133, p. 104696, 2022, doi: https://doi.org/10.1016/j.cemconcomp.2022.104696.
  • A. L. M. V. Rodrigues, Á. Á. F. Mendes, V. Gomes, A. F. Battagin, M. R. M. Saade, and M. G. Da Silva, “Environmental and mechanical evaluation of blended cements with high mineral admixture content,” Front Mater, vol. 9, p. 880986, 2022, doi: 10.3389/fmats.2022.880986.
  • A. Skaropoulou, K. Sotiriadis, G. Kakali, and S. Tsivilis, “Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack,” Cem Concr Compos, vol. 37, pp. 267–275, 2013, doi: https://doi.org/10.1016/j.cemconcomp.2013.01.007.
  • A. M. Diab, H. E. Elyamany, A. E. M. Abd Elmoaty, and M. M. Sreh, “Effect of nanomaterials additives on performance of concrete resistance against magnesium sulfate and acids,” Constr Build Mater, vol. 210, pp. 210–231, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.03.099.
  • S. Sathe, M. Zain Kangda, and G. A. Amaranatha, “Resistance against sulphate attack in concrete by addition of nano alumina,” Mater Today Proc, vol. 60, pp. 294–298, 2022, doi: https://doi.org/10.1016/j.matpr.2022.01.124.
  • S. A. H and E.-G. M. M, “Long-Term Sulfate Resistance of Blended Cement Concrete with Waste Glass Powder,” Practice Periodical on Structural Design and Construction, vol. 27, no. 4, p. 04022047, Nov. 2022, doi: 10.1061/(ASCE)SC.1943-5576.0000731.
  • S. A. Yildizel, M. Uzun, M. A. Arslan, and T. Ozbakkaloglu, “The prediction and evaluation of recycled polypropylene fiber and aggregate incorporated foam concrete using Artificial Neural Networks,” Constr Build Mater, vol. 411, p. 134646, 2024, doi: https://doi.org/10.1016/j.conbuildmat.2023.134646.
  • H. Hafez, R. Kurda, W. M. Cheung, and B. Nagaratnam, “Comparative life cycle assessment between imported and recovered fly ash for blended cement concrete in the UK,” J Clean Prod, vol. 244, p. 118722, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.118722.
  • D. A. Salas, A. D. Ramirez, N. Ulloa, H. Baykara, and A. J. Boero, “Life cycle assessment of geopolymer concrete,” Constr Build Mater, vol. 190, pp. 170–177, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.09.123.
  • X. Huang, Z. Jiao, F. Xing, L. Sui, B. Hu, and Y. Zhou, “Performance assessment of LC3 concrete structures considering life-cycle cost and environmental impacts,” J Clean Prod, vol. 436, p. 140380, 2024, doi: https://doi.org/10.1016/j.jclepro.2023.140380.
  • K. Scrivener, F. Martirena, S. Bishnoi, and S. Maity, “Calcined clay limestone cements (LC3),” Cem Concr Res, vol. 114, pp. 49–56, Dec. 2018, doi: 10.1016/J.CEMCONRES.2017.08.017.
  • M. Dener, U. Altunhan, and A. Benli, “A green binder for cold weather applications: enhancing mechanical performance of alkali-activated slag through modulus, alkali dosage, and Portland cement substitution,” Archives of Civil and Mechanical Engineering, vol. 24, no. 3, p. 176, 2024, doi: 10.1007/s43452-024-00991-w.
  • M. Ben Haha, P. Termkhajornkit, A. Ouzia, S. Uppalapati, and B. Huet, “Low clinker systems - Towards a rational use of SCMs for optimal performance,” Cem Concr Res, vol. 174, p. 107312, 2023, doi: https://doi.org/10.1016/j.cemconres.2023.107312.
  • A. S. Basavaraj, H. Hafez, A. Bell, M. Drewniok, and P. Purnell, “Transition Towards Low Carbon Concrete – Persuading Parameters,” in Smart & Sustainable Infrastructure: Building a Greener Tomorrow, N. Banthia, S. Soleimani-Dashtaki, and S. Mindess, Eds., Cham: Springer Nature Switzerland, 2024, pp. 296–303.
  • Z. Xia, A. Bergmann, and L. Sanchez, “Assessment of Alkali-Silica Reaction Development in High Limestone Replacement Portland-Limestone Mortar and Concrete,” in Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete, L. F. M. Sanchez and C. Trottier, Eds., Cham: Springer Nature Switzerland, 2024, pp. 710–717.
  • R. A. dos Santos et al., “Durability and mechanical properties of concretes with limestone filler with particle packing,” Materiales de Construcción, vol. 74, no. 355, p. e348, Oct. 2024, doi: 10.3989/mc.2024.366423.
  • E. Hosseinzadehfard and B. Mobaraki, “Investigating concrete durability: The impact of natural pozzolan as a partial substitute for microsilica in concrete mixtures,” Constr Build Mater, vol. 419, p. 135491, 2024, doi: https://doi.org/10.1016/j.conbuildmat.2024.135491.
  • H. Kaplan and H. Binici, “TRAS VE TRASLI ÇİMENTOLAR,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 1, no. 2, pp. 121–127, 1995, [Online]. Available: https://dergipark.org.tr/en/pub/pajes/issue/20554/219072
  • X. Pu, “Investigation on pozzolanic effect of mineral additives in cement and concrete by specific strength index,” Cem Concr Res, vol. 29, no. 6, pp. 951–955, 1999, doi: https://doi.org/10.1016/S0008-8846(99)00012-5.
  • H. J. Li, L. Yang, and Y. J. Xie, “Effect of Fineness on the Properties of Cement Paste,” Key Eng Mater, vol. 629–630, pp. 366–370, 2015, doi: 10.4028/www.scientific.net/KEM.629-630.366.
  • M. Öner, K. Erdoğdu, and A. Günlü, “Effect of components fineness on strength of blast furnace slag cement,” Cem Concr Res, vol. 33, no. 4, pp. 463–469, 2003, doi: https://doi.org/10.1016/S0008-8846(02)00713-5.
  • X. J. Li, “Study on the mechanism of magnesium sulfate to cement and CSH gel,” Adv Mat Res, vol. 243, pp. 4687–4690, 2011, doi: 10.4028/www.scientific.net/AMR.243-249.4687.
  • R. Vedalakshmi, A. S. Raj, S. Srinivasan, and K. G. Babu, “Effect of magnesium and sulphate ions on the sulphate resistance of blended cements in low and medium-strength concretes,” Advances in Cement Research, vol. 17, no. 2, pp. 47–55, 2005, doi: 10.1680/adcr.2005.17.2.47.
  • A. Neville, “The confused world of sulfate attack on concrete,” Cem Concr Res, vol. 34, no. 8, pp. 1275–1296, 2004, doi: https://doi.org/10.1016/j.cemconres.2004.04.004.
  • M. Maes and N. De Belie, “Resistance of concrete and mortar against combined attack of chloride and sodium sulphate,” Cem Concr Compos, vol. 53, pp. 59–72, 2014, doi: https://doi.org/10.1016/j.cemconcomp.2014.06.013.
  • E. F. Irassar, A. Di Maio, and O. R. Batic, “Sulfate attack on concrete with mineral admixtures,” Cem Concr Res, vol. 26, no. 1, pp. 113–123, 1996, doi: https://doi.org/10.1016/0008-8846(95)00195-6.
  • R. I. Martínez-Rosales, J. M. Miranda-Vidales, L. Narváez-Hernández, and J. M. Lozano de Poo, “Strength and Corrosion Studies of Mortars Added with Pozzolan in Sulphate Ions Environment,” KSCE Journal of Civil Engineering, vol. 24, no. 12, pp. 3810–3819, 2020, doi: 10.1007/s12205-020-0183-2.
  • K. Tosun-Felekoğlu, “The effect of C3A content on sulfate durability of Portland limestone cement mortars,” Constr Build Mater, vol. 36, pp. 437–447, 2012, doi: https://doi.org/10.1016/j.conbuildmat.2012.04.091.
  • A. M. Tahwia, R. M. Fouda, M. Abd Elrahman, and O. Youssf, “Long-Term Performance of Concrete Made with Different Types of Cement under Severe Sulfate Exposure,” Materials, vol. 16, no. 1, p. 240, Dec. 2022, doi: 10.3390/ma16010240.
  • X. Lv, L. Yang, J. Li, and F. Wang, “Roles of fly ash, granulated blast-furnace slag, and silica fume in long-term resistance to external sulfate attacks at atmospheric temperature,” Cem Concr Compos, vol. 133, p. 104696, 2022, doi: https://doi.org/10.1016/j.cemconcomp.2022.104696.
  • A. Rossetti, T. Ikumi, I. Segura, and E. F. Irassar, “Performance of Blended Cements with Limestone Filler and Illitic Calcined Clay Immediately Exposed to Sulfate Environment,” in Calcined Clays for Sustainable Concrete, S. Bishnoi, Ed., Singapore: Springer Singapore, 2020, pp. 655–664.
  • H. Zhu, D. Mapa, B. Lorentz, K. Riding, and A. Zayed, “Sulfate Optimization for CCIL Blended Systems,” in Calcined Clays for Sustainable Concrete, S. Bishnoi, Ed., Singapore: Springer Singapore, 2020, pp. 323–330.
  • A. Baldermann et al., “Effect of very high limestone content and quality on the sulfate resistance of blended cements,” Constr Build Mater, vol. 188, pp. 1065–1076, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.08.169.
  • Z. Makhloufi, S. Aggoun, B. Benabed, E. H. Kadri, and M.Bederina, “Effect of magnesium sulfate on the durability of limestone mortars based on quaternary blended cements,” Cem Concr Compos, vol. 65, pp. 186–199, 2016, doi: https://doi.org/10.1016/j.cemconcomp.2015.10.020.

LIMESTONE AND NATURAL POZZOLAN BLENDED CEMENTS: EVALUATING SULFATE RESISTANCE FOR SUSTAINABLE CONSTRUCTION

Year 2025, Volume: 13 Issue: 2, 524 - 534, 01.06.2025
https://doi.org/10.36306/konjes.1596875

Abstract

This study aims to compare the behavior of ordinary Portland cement, sulfate resistant cement, natural pozzolan blended cement and limestone blended cement, produced in the same strength class as Portland clinker, under the influence of sulfate. For this purpose, five different cements were produced in Konya Cement production facilities. Characterization and sulfate tests were carried out on the cements. The strengths of the cements blended with limestone and natural pozzolan were determined in different sulfate environments and under normal curing conditions, and their behavior under sulfate effect was observed during a 360-day monitoring period. The experimental results revealed that the sulfate resistant cement with the lowest C3A content had the highest sulfate resistance. Moreover, the limestone blended cement showed a superior performance compared to the natural pozzolan blended cement. The compressive strength of the natural pozzolana blended cement was 50.1 MPa at 28 days and decreased by about 6% to 47.1 MPa after 360 days of sulfate exposure. On the other hand, the 28-day compressive strength of the limestone blended cement was 49.8 MPa, while it remained almost unchanged at 50 MPa after 360 days of sulfate exposure. These results show that limestone and natural pozzolan blended cements have the potential for widespread use in construction applications in line with environmental sustainability goals.

Supporting Institution

Konya Technical University Research Foundation

Project Number

231004004

Thanks

The authors thank to Konya Cement Factory for making their facilities available for production.

References

  • W. L. Baloch, H. Siad, M. Lachemi, and M. Sahmaran, “The role of supplementary cementitious materials and fiber reinforcements in enhancing the sulfate attack resistance of SCC/ECC composite systems,” Constr Build Mater, vol. 423, p. 135821, 2024, doi: https://doi.org/10.1016/j.conbuildmat.2024.135821.
  • X. Lv, L. Yang, J. Li, and F. Wang, “Roles of fly ash, granulated blast-furnace slag, and silica fume in long-term resistance to external sulfate attacks at atmospheric temperature,” Cem Concr Compos, vol. 133, p. 104696, 2022, doi: https://doi.org/10.1016/j.cemconcomp.2022.104696.
  • A. L. M. V. Rodrigues, Á. Á. F. Mendes, V. Gomes, A. F. Battagin, M. R. M. Saade, and M. G. Da Silva, “Environmental and mechanical evaluation of blended cements with high mineral admixture content,” Front Mater, vol. 9, p. 880986, 2022, doi: 10.3389/fmats.2022.880986.
  • A. Skaropoulou, K. Sotiriadis, G. Kakali, and S. Tsivilis, “Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack,” Cem Concr Compos, vol. 37, pp. 267–275, 2013, doi: https://doi.org/10.1016/j.cemconcomp.2013.01.007.
  • A. M. Diab, H. E. Elyamany, A. E. M. Abd Elmoaty, and M. M. Sreh, “Effect of nanomaterials additives on performance of concrete resistance against magnesium sulfate and acids,” Constr Build Mater, vol. 210, pp. 210–231, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.03.099.
  • S. Sathe, M. Zain Kangda, and G. A. Amaranatha, “Resistance against sulphate attack in concrete by addition of nano alumina,” Mater Today Proc, vol. 60, pp. 294–298, 2022, doi: https://doi.org/10.1016/j.matpr.2022.01.124.
  • S. A. H and E.-G. M. M, “Long-Term Sulfate Resistance of Blended Cement Concrete with Waste Glass Powder,” Practice Periodical on Structural Design and Construction, vol. 27, no. 4, p. 04022047, Nov. 2022, doi: 10.1061/(ASCE)SC.1943-5576.0000731.
  • S. A. Yildizel, M. Uzun, M. A. Arslan, and T. Ozbakkaloglu, “The prediction and evaluation of recycled polypropylene fiber and aggregate incorporated foam concrete using Artificial Neural Networks,” Constr Build Mater, vol. 411, p. 134646, 2024, doi: https://doi.org/10.1016/j.conbuildmat.2023.134646.
  • H. Hafez, R. Kurda, W. M. Cheung, and B. Nagaratnam, “Comparative life cycle assessment between imported and recovered fly ash for blended cement concrete in the UK,” J Clean Prod, vol. 244, p. 118722, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.118722.
  • D. A. Salas, A. D. Ramirez, N. Ulloa, H. Baykara, and A. J. Boero, “Life cycle assessment of geopolymer concrete,” Constr Build Mater, vol. 190, pp. 170–177, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.09.123.
  • X. Huang, Z. Jiao, F. Xing, L. Sui, B. Hu, and Y. Zhou, “Performance assessment of LC3 concrete structures considering life-cycle cost and environmental impacts,” J Clean Prod, vol. 436, p. 140380, 2024, doi: https://doi.org/10.1016/j.jclepro.2023.140380.
  • K. Scrivener, F. Martirena, S. Bishnoi, and S. Maity, “Calcined clay limestone cements (LC3),” Cem Concr Res, vol. 114, pp. 49–56, Dec. 2018, doi: 10.1016/J.CEMCONRES.2017.08.017.
  • M. Dener, U. Altunhan, and A. Benli, “A green binder for cold weather applications: enhancing mechanical performance of alkali-activated slag through modulus, alkali dosage, and Portland cement substitution,” Archives of Civil and Mechanical Engineering, vol. 24, no. 3, p. 176, 2024, doi: 10.1007/s43452-024-00991-w.
  • M. Ben Haha, P. Termkhajornkit, A. Ouzia, S. Uppalapati, and B. Huet, “Low clinker systems - Towards a rational use of SCMs for optimal performance,” Cem Concr Res, vol. 174, p. 107312, 2023, doi: https://doi.org/10.1016/j.cemconres.2023.107312.
  • A. S. Basavaraj, H. Hafez, A. Bell, M. Drewniok, and P. Purnell, “Transition Towards Low Carbon Concrete – Persuading Parameters,” in Smart & Sustainable Infrastructure: Building a Greener Tomorrow, N. Banthia, S. Soleimani-Dashtaki, and S. Mindess, Eds., Cham: Springer Nature Switzerland, 2024, pp. 296–303.
  • Z. Xia, A. Bergmann, and L. Sanchez, “Assessment of Alkali-Silica Reaction Development in High Limestone Replacement Portland-Limestone Mortar and Concrete,” in Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete, L. F. M. Sanchez and C. Trottier, Eds., Cham: Springer Nature Switzerland, 2024, pp. 710–717.
  • R. A. dos Santos et al., “Durability and mechanical properties of concretes with limestone filler with particle packing,” Materiales de Construcción, vol. 74, no. 355, p. e348, Oct. 2024, doi: 10.3989/mc.2024.366423.
  • E. Hosseinzadehfard and B. Mobaraki, “Investigating concrete durability: The impact of natural pozzolan as a partial substitute for microsilica in concrete mixtures,” Constr Build Mater, vol. 419, p. 135491, 2024, doi: https://doi.org/10.1016/j.conbuildmat.2024.135491.
  • H. Kaplan and H. Binici, “TRAS VE TRASLI ÇİMENTOLAR,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 1, no. 2, pp. 121–127, 1995, [Online]. Available: https://dergipark.org.tr/en/pub/pajes/issue/20554/219072
  • X. Pu, “Investigation on pozzolanic effect of mineral additives in cement and concrete by specific strength index,” Cem Concr Res, vol. 29, no. 6, pp. 951–955, 1999, doi: https://doi.org/10.1016/S0008-8846(99)00012-5.
  • H. J. Li, L. Yang, and Y. J. Xie, “Effect of Fineness on the Properties of Cement Paste,” Key Eng Mater, vol. 629–630, pp. 366–370, 2015, doi: 10.4028/www.scientific.net/KEM.629-630.366.
  • M. Öner, K. Erdoğdu, and A. Günlü, “Effect of components fineness on strength of blast furnace slag cement,” Cem Concr Res, vol. 33, no. 4, pp. 463–469, 2003, doi: https://doi.org/10.1016/S0008-8846(02)00713-5.
  • X. J. Li, “Study on the mechanism of magnesium sulfate to cement and CSH gel,” Adv Mat Res, vol. 243, pp. 4687–4690, 2011, doi: 10.4028/www.scientific.net/AMR.243-249.4687.
  • R. Vedalakshmi, A. S. Raj, S. Srinivasan, and K. G. Babu, “Effect of magnesium and sulphate ions on the sulphate resistance of blended cements in low and medium-strength concretes,” Advances in Cement Research, vol. 17, no. 2, pp. 47–55, 2005, doi: 10.1680/adcr.2005.17.2.47.
  • A. Neville, “The confused world of sulfate attack on concrete,” Cem Concr Res, vol. 34, no. 8, pp. 1275–1296, 2004, doi: https://doi.org/10.1016/j.cemconres.2004.04.004.
  • M. Maes and N. De Belie, “Resistance of concrete and mortar against combined attack of chloride and sodium sulphate,” Cem Concr Compos, vol. 53, pp. 59–72, 2014, doi: https://doi.org/10.1016/j.cemconcomp.2014.06.013.
  • E. F. Irassar, A. Di Maio, and O. R. Batic, “Sulfate attack on concrete with mineral admixtures,” Cem Concr Res, vol. 26, no. 1, pp. 113–123, 1996, doi: https://doi.org/10.1016/0008-8846(95)00195-6.
  • R. I. Martínez-Rosales, J. M. Miranda-Vidales, L. Narváez-Hernández, and J. M. Lozano de Poo, “Strength and Corrosion Studies of Mortars Added with Pozzolan in Sulphate Ions Environment,” KSCE Journal of Civil Engineering, vol. 24, no. 12, pp. 3810–3819, 2020, doi: 10.1007/s12205-020-0183-2.
  • K. Tosun-Felekoğlu, “The effect of C3A content on sulfate durability of Portland limestone cement mortars,” Constr Build Mater, vol. 36, pp. 437–447, 2012, doi: https://doi.org/10.1016/j.conbuildmat.2012.04.091.
  • A. M. Tahwia, R. M. Fouda, M. Abd Elrahman, and O. Youssf, “Long-Term Performance of Concrete Made with Different Types of Cement under Severe Sulfate Exposure,” Materials, vol. 16, no. 1, p. 240, Dec. 2022, doi: 10.3390/ma16010240.
  • X. Lv, L. Yang, J. Li, and F. Wang, “Roles of fly ash, granulated blast-furnace slag, and silica fume in long-term resistance to external sulfate attacks at atmospheric temperature,” Cem Concr Compos, vol. 133, p. 104696, 2022, doi: https://doi.org/10.1016/j.cemconcomp.2022.104696.
  • A. Rossetti, T. Ikumi, I. Segura, and E. F. Irassar, “Performance of Blended Cements with Limestone Filler and Illitic Calcined Clay Immediately Exposed to Sulfate Environment,” in Calcined Clays for Sustainable Concrete, S. Bishnoi, Ed., Singapore: Springer Singapore, 2020, pp. 655–664.
  • H. Zhu, D. Mapa, B. Lorentz, K. Riding, and A. Zayed, “Sulfate Optimization for CCIL Blended Systems,” in Calcined Clays for Sustainable Concrete, S. Bishnoi, Ed., Singapore: Springer Singapore, 2020, pp. 323–330.
  • A. Baldermann et al., “Effect of very high limestone content and quality on the sulfate resistance of blended cements,” Constr Build Mater, vol. 188, pp. 1065–1076, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.08.169.
  • Z. Makhloufi, S. Aggoun, B. Benabed, E. H. Kadri, and M.Bederina, “Effect of magnesium sulfate on the durability of limestone mortars based on quaternary blended cements,” Cem Concr Compos, vol. 65, pp. 186–199, 2016, doi: https://doi.org/10.1016/j.cemconcomp.2015.10.020.
There are 35 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Article
Authors

Ahmet Yiğit 0000-0002-4148-8036

Furkan Türk 0000-0002-8156-0354

Ülkü Sultan Keskin 0000-0002-9517-9116

Project Number 231004004
Publication Date June 1, 2025
Submission Date December 5, 2024
Acceptance Date April 14, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

IEEE A. Yiğit, F. Türk, and Ü. S. Keskin, “LIMESTONE AND NATURAL POZZOLAN BLENDED CEMENTS: EVALUATING SULFATE RESISTANCE FOR SUSTAINABLE CONSTRUCTION”, KONJES, vol. 13, no. 2, pp. 524–534, 2025, doi: 10.36306/konjes.1596875.