Research Article
BibTex RIS Cite

Year 2025, Volume: 13 Issue: 3, 667 - 682, 01.09.2025
https://doi.org/10.36306/konjes.1655149

Abstract

References

  • S. Jin, G. Occhipinti, and R. Jin, “GNSS ionospheric seismology: recent observation evidences and characteristics”, Earth Sci. Rev. vol. 147, pp. 54–64, 2015, doi: 10.1016/j.earscirev.2015.05.003.
  • S. Uplines, and K. Boyarchuk, Ionospheric Precursors of Earthquakes. Springer Science & Business Media, 2004. V. Atasoy, and E. Ozturk, “Geodetic Deformation Measurements and Interpretation of Results”, TMMOB Journal of Surveying Engineering, (In Turkish), pp. 50-51, 1984.
  • B. Bilgen and C. İnal, “Investigation of Vertical Deformations with GNSS Technique”, Afyon Kocatepe University Journal of Science and Engineering, vol. 22, no. 3, pp. 615–625, 2022, doi: 10.35414/akufemubid.1066483.
  • B. Bilgen, C. İnal, and S. Bülbül, “Point Positioning Performanceo Trimble-RTX in Different Satellite Combinations”, KONJES, vol. 10, no. 4, pp. 941–949, 2022, doi: 10.36306/konjes.1165922.
  • H. Ozener, E. Arpat, S. Ergintav, A. Dogru, R. Cakmak, B. Turgut, and U. Dogan, “Kinematics of the eastern part of the North Anatolian Fault Zone”, Journal of geodynamics, vol. 49, no. 3-4, pp. 141-150, 2010, doi: 10.1016/j.jog.2010.01.003.
  • A. Gualandi, E. Serpelloni, and M.E. Belardinelli, “Space–time evolution of crustal deformation related to the Mw 6.3, 2009 L’Aquila earthquake (central Italy) from principal component analysis inversion of GPS position time-series”, Geophys. J. Int., vol. 197, no. 1, pp. 174–191, 2014, doi: 10.1093/gji/ggt522.
  • R.K. Dumka, S. Chopra, S. Prajapati, “GPS derived crustal deformation analysis of Kachchh, zone of 2001(M7.7) earthquake, Western India”, Quaternary International, vol. 507, pp. 295-301, 2019, doi: 10.1016/j.quaint.2019.01.032.
  • A.Z. Sha'ameri, W.A. Wan Aris, S. Sadiah, T.A. Musa, “Reliability of Seismic Signal Analysis for Earthquake Epicenter Location Estimation Using 1 Hz GPS Kinematic Solution”, Measurement, vol. 182, art no. 109669, 2021, doi: 10.1016/j.measurement.2021.109669.
  • C.O. Yigit, A. El-Mowafy, A.A. Dindar, M. Bezcioglu, and I. Tiryakioglu, “Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table”, Journal of Surveying Engineering, vol. 147, no. 1, pp. 1-14, 2021, doi: 10.1061/(ASCE)SU.1943-5428.0000343.
  • M. Bezcioglu, C.O. Yigit, B. Karadeniz, A.A. Dindar, A, El-Mowafy, and O. Avci, “Evaluation of real-time variometric approach and real-time precise point positioning in monitoring dynamic displacement based on high-rate (20 Hz) GPS Observations” GPS Solutions, vol. 27, art no. 43, 2023, doi: 10.1007/s10291-022-01381-6.
  • S. Bulbul, T. Gundogan, C. Inal, F. Basciftci, and O. Yildirim, “Monitoring deformations caused by Pazarcık (Mw = 7.7) and Ekinözü (Mw = 7.6) earthquakes in Kahramanmaraş on 6 February 2023 with GNSS” Eur. Phys. J. Plus, vol. 138, art no. 1110, 2023, doi: 10.1140/epjp/s13360-023-04759-8.
  • A. Ozkan, H.I. Solak, I. Tiryakioglu, M.D. Senturk, B. Aktuğ, C. Gezgin, F. Poyraz, H. Duman, F. Masson, G. Uslular, C.O. Yigit, H. Yavasoglu, “Characterization of the co-seismic pattern and slip distribution of the February 06, 2023, Kahramanmaraş (Türkiye) earthquakes (Mw 7.7 and Mw 7.6) via dense GNSS network”, Tectonophysics, vol. 866, art no. 230041, 2023, doi: 10.1016/j.tecto.2023.230041.
  • W. Li, L. Zhao, K. Tan, X. Lu, C. Zhang, C. Li, and S. Han, “Coseismic deformation and fault slip distribution of the 2023 Mw 7.8 and Mw 7.6 earthquakes in Türkiye”, Earthquake Science, vol. 37, pp. 263-276, 2024, doi: 10.1016/j.eqs.2024.03.006.
  • T. Taymaz, A. Ganas, S. Yolsal-Çevikbilen, F. Vera, T. Eken, C. Erman, D. Keleş, V. Kapetanidis, S. Valkaniotis, I. Karasante, V. Tsironi, P. Gaebler, D. Melgar, and T. Öcalan, “Source Mechanism and Rupture Process of the 24 January 2020 Mw 6.7 Doğanyol–Sivrice Earthquake obtained from Seismological Waveform Analysis and Space Geodetic Observations on the East Anatolian Fault Zone (Turkey)”, Tectonophysics, vol. 804, art no. 228745, 2021, doi: 10.1016/j.tecto.2021.228745.
  • C. Bayik, G. Gurbuz, S. Abdikan, K.S. Gormus, and S.H. Kutoglu, “Investigation of Source Parameters of the 2020 Elazig-Sivrice Earthquake (Mw 6.8) in the East Anatolian Fault Zone”, Pure Appl. Geophys., vol. 179, pp. 587–598, 2022, doi: 10.1007/s00024-022-02944-x.
  • O. Gunaydin, Y. Inceyol, H. Cetin, M. Ulukavak, “Fault displacement analysis using a multidisciplinary approach on the Gerede Segment of the North Anatolian Fault Zone”, Soil Dynamics and Earthquake Engineering, vol. 164, art no. 107519, 2023, doi: 10.1016/j.soildyn.2022.107519.
  • T. Kobayashi, H. Munekane, M. Kuwahara, and H. Furui, “Insights on the 2023 Kahramanmaraş Earthquake, Turkey, from InSAR: fault locations, rupture styles and induced deformation”, Geophysical Journal International, vol. 236, pp. 1068-1088, 2024, doi: 10.1093/gji/ggad464.
  • A. Gualandi, H. Perfettini, M. Radiguet, N. Cotte, and V. Kostoglodov, “GPS deformation related to the Mw 7.3, 2014, Papanoa earthquake (Mexico) reveals the aseismic behavior of the Guerrero seismic gap”, Geophys. Res. Lett., vol. 44, pp. 6039–6047, 2017, doi:10.1002/2017GL072913.
  • Y. Wu, Z. Jiang, J. Zhao, X. Liu, W. Wei, Q. Liu, Q. Li, Z. Zou, and Z. Zhang, “Crustal deformation before the 2008 Wenchuan MS8.0 earthquake studied using GPS data”, Journal of Geodynamics, vol. 85, pp. 11-23, 2015, doi: 10.1016/j.jog.2014.12.002
  • E. Klein, C. Vigny, L. Fleitout, R. Grandin, R. Jolivet, E. Rivera, M. Métois, “A comprehensive analysis of the Illapel 2015 Mw8.3 earthquake from GPS and InSAR data”, Earth and Planetary Science Letters, vol. 469, pp. 123-134, 2017, doi: 10.1016/j.epsl.2017.04.010.
  • L. Wang, H. Gao, G. Feng, W. Xu, “Source parameters and triggering links of the earthquake sequence in central Italy from 2009 to 2016 analyzed with GPS and InSAR data”, Tectonophysics, vol. 744, pp. 285-295, 2018, doi: 10.1016/j.tecto.2018.07.013.
  • T. Taymaz, H. Eyidogan, and J. Jackson, “Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey)”, Geophysical Journal Int., vol. 106, pp. 537-550, 1991, doi: 10.1111/j.1365-246X.1991.tb06328.x.
  • C.R. Allen, “Active faulting in northern Turkey”, Contr.1577. Division of Geology Sciences, California Institute of Technology, 1969.
  • H. Cetin, H. Güneyli, L. Mayer, “Paleoseismology of the Palu–Lake Hazar segment of the East Anatolian Fault Zone, Turkey”, Tectonophysics, vol. 374, no. 3-4, pp. 163-197, 2003, doi: 10.1016/j.tecto.2003.08.003.
  • F. Bulut, M. Bohnhoff, T. Eken, C. Janssen, T. Kılıç, G. Dresen, “The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations”, Journal of Geophysical Research, vol. 117, no. B7, pp. 1-16, 2012, doi: 10.1029/2011JB008966.
  • NN. Ambraseys, and J.A. Jackson, “Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region”, Geophysical Journal International, vol. 133, no. 2, pp. 390-406, 1998, doi: 10.1046/j.1365-246X.1998.00508.x.
  • AFAD, “Preliminary Assessment Report on 06 February 2023 Pazarcık (Kahramanmaraş) Mw 7.7, Elbistan (Kahramanmaraş) Mw 7.6 Earthquakes”, Earthquake Department, pp. 1-12, 2023.
  • D. Ö. Demir and Ö. Güneş, “29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula depremi deformasyonlarının bağıl konum belirleme servis sonuçları ile incelenmesi”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 2, pp. 575–581, 2024, doi: 10.28948/ngumuh.1387411.
  • M. Hanif and S. Tongleamnak, “Quantifying crustal deformation caused by the Cianjur tectonic earthquakes magnitude 5.6 through DInSAR and GNSS technology”, Bulletin of Earth Sciences of Thailand, vol. 16, no. 1, pp. 60-71, 2024. https://ph01.tci-thaijo.org/index.php/bestjournal/article/ view/256321
  • B. Hoffman-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS - Global Navigation Satellite Systems, Austria, Springer, 2008.
  • Y.Q. Chen, A. Chrzanowski, J.M. Secord, “A strategy for the analysis of the stability of reference points in deformation surveys” Cism J ACSGS, vol. 44, no. 2, pp. 141–149, 1990, doi: 10.1139/geomat-1990-0016.
  • E. Gokalp, L. Tasci, “Deformation monitoring by GPS at embankment dams and deformation analysis” Surv Rev, vol. 41, no. 311, pp. 86–102, 2009, doi: 10.1179/003962608X390021.
  • B. Konakoglu, and E. Gokalp, “Deformation Measurements and Analysis with Robust Methods A Case Study Deriner Dam”, Turkish Journal of Science and Technology, vol. 13, no. 1, pp. 99–103, 2018.
  • S. Doganalp, B. Turgut, and C. Inal, “Deformation Analyses by Kalman Filtering and S Transformation Techniques for Height Networks”, (in Turkish), In Proc. 2nd Symposium of Engineering Surveys, 23-25 Nov. 2005, İstanbul.
  • C.O. Yigit, C. Inal, “An Improved Programme for Deformation Analysis of Vertical Networks”, In Proc. XXIII FIG Congress, Munich, Germany, 2006.
  • G. Even-Tzur, “Extended S-transformation as a tool for deformation analysis”, Survey Review, vol. 44, no. 327, pp. 315-318, 2012, doi: 10.1179/1752270612Y.0000000005.
  • H. Velsink, “On the deformation analysis of point fields”, Journal of Geodesy, vol. 89, pp. 1071-1087, 2015, doi: 10.1007/s00190-015-0835-z.
  • C. Aydin, “Effects of Displaced Reference Points on Deformation Analysis”, Journal of Surveying Engineering, vol. 143, no. 3, 2017, doi: 10.1061/(ASCE)SU.1943-5428.0000216.

UNVEILING EARTHQUAKE-INDUCED DEFORMATIONS: INSIGHTS FROM KAHRAMANMARAŞ SEISMIC EVENT USING AUSPOS ONLINE GPS PROCESSING SERVICE

Year 2025, Volume: 13 Issue: 3, 667 - 682, 01.09.2025
https://doi.org/10.36306/konjes.1655149

Abstract

Determination of crustal movement through geodetic deformation analysis methods provides a better understanding of the severity of the earthquakes. The widespread use of continuously operating GPS stations allows the deformations caused by earthquakes to be investigated with GPS data. In this study, the movements of Continuously Operating Reference Stations-Türkiye (CORS-Tr) stations affected by the Kahramanmaraş earthquakes (Mw 7.7 and Mw 7.6), which was felt in a wide area, were investigated in detail. It is aimed to detect and analyse co-seismic and absolute deformations due to the Kahramanmaraş earthquakes using AUSPOS-online GPS processing service and Iteratively Weighted Similarity Transformation (IWST). Ten stations were selected from the provinces in the earthquake impact area and their 28-day RINEX data, covering before and after the earthquake, were used. The data were processed using AUSPOS. Geodetic deformation analyses were performed using two epoch measurements of established deformation network via in-house software. In addition, the displacements of the two stations close to the epicentre during the monitoring period were revealed by 28-day GPS coordinate time series. Conclusively, it was observed that final S-transformation-derived absolute deformations and average coordinate-derived co-seismic deformations are highly consistent. The results showed that the largest absolute deformation occurred at the EKZ1 station with 4.68m, that was the closest station to the epicentre of the aftershock (Mw 7.6). The absolute deformation at station MAR1, which is the second near station to the epicentre of the aftershock, is 62.5 cm. All Cors-Tr stations were unstable according to deformation analysis results. In particular, unusual vertical movements observed one day prior to the earthquake at the MAR1 station in Kahramanmaraş may indicate potential pre-seismic deformation signals, highlighting the potential of the proposed method for earthquake-related monitoring.

References

  • S. Jin, G. Occhipinti, and R. Jin, “GNSS ionospheric seismology: recent observation evidences and characteristics”, Earth Sci. Rev. vol. 147, pp. 54–64, 2015, doi: 10.1016/j.earscirev.2015.05.003.
  • S. Uplines, and K. Boyarchuk, Ionospheric Precursors of Earthquakes. Springer Science & Business Media, 2004. V. Atasoy, and E. Ozturk, “Geodetic Deformation Measurements and Interpretation of Results”, TMMOB Journal of Surveying Engineering, (In Turkish), pp. 50-51, 1984.
  • B. Bilgen and C. İnal, “Investigation of Vertical Deformations with GNSS Technique”, Afyon Kocatepe University Journal of Science and Engineering, vol. 22, no. 3, pp. 615–625, 2022, doi: 10.35414/akufemubid.1066483.
  • B. Bilgen, C. İnal, and S. Bülbül, “Point Positioning Performanceo Trimble-RTX in Different Satellite Combinations”, KONJES, vol. 10, no. 4, pp. 941–949, 2022, doi: 10.36306/konjes.1165922.
  • H. Ozener, E. Arpat, S. Ergintav, A. Dogru, R. Cakmak, B. Turgut, and U. Dogan, “Kinematics of the eastern part of the North Anatolian Fault Zone”, Journal of geodynamics, vol. 49, no. 3-4, pp. 141-150, 2010, doi: 10.1016/j.jog.2010.01.003.
  • A. Gualandi, E. Serpelloni, and M.E. Belardinelli, “Space–time evolution of crustal deformation related to the Mw 6.3, 2009 L’Aquila earthquake (central Italy) from principal component analysis inversion of GPS position time-series”, Geophys. J. Int., vol. 197, no. 1, pp. 174–191, 2014, doi: 10.1093/gji/ggt522.
  • R.K. Dumka, S. Chopra, S. Prajapati, “GPS derived crustal deformation analysis of Kachchh, zone of 2001(M7.7) earthquake, Western India”, Quaternary International, vol. 507, pp. 295-301, 2019, doi: 10.1016/j.quaint.2019.01.032.
  • A.Z. Sha'ameri, W.A. Wan Aris, S. Sadiah, T.A. Musa, “Reliability of Seismic Signal Analysis for Earthquake Epicenter Location Estimation Using 1 Hz GPS Kinematic Solution”, Measurement, vol. 182, art no. 109669, 2021, doi: 10.1016/j.measurement.2021.109669.
  • C.O. Yigit, A. El-Mowafy, A.A. Dindar, M. Bezcioglu, and I. Tiryakioglu, “Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table”, Journal of Surveying Engineering, vol. 147, no. 1, pp. 1-14, 2021, doi: 10.1061/(ASCE)SU.1943-5428.0000343.
  • M. Bezcioglu, C.O. Yigit, B. Karadeniz, A.A. Dindar, A, El-Mowafy, and O. Avci, “Evaluation of real-time variometric approach and real-time precise point positioning in monitoring dynamic displacement based on high-rate (20 Hz) GPS Observations” GPS Solutions, vol. 27, art no. 43, 2023, doi: 10.1007/s10291-022-01381-6.
  • S. Bulbul, T. Gundogan, C. Inal, F. Basciftci, and O. Yildirim, “Monitoring deformations caused by Pazarcık (Mw = 7.7) and Ekinözü (Mw = 7.6) earthquakes in Kahramanmaraş on 6 February 2023 with GNSS” Eur. Phys. J. Plus, vol. 138, art no. 1110, 2023, doi: 10.1140/epjp/s13360-023-04759-8.
  • A. Ozkan, H.I. Solak, I. Tiryakioglu, M.D. Senturk, B. Aktuğ, C. Gezgin, F. Poyraz, H. Duman, F. Masson, G. Uslular, C.O. Yigit, H. Yavasoglu, “Characterization of the co-seismic pattern and slip distribution of the February 06, 2023, Kahramanmaraş (Türkiye) earthquakes (Mw 7.7 and Mw 7.6) via dense GNSS network”, Tectonophysics, vol. 866, art no. 230041, 2023, doi: 10.1016/j.tecto.2023.230041.
  • W. Li, L. Zhao, K. Tan, X. Lu, C. Zhang, C. Li, and S. Han, “Coseismic deformation and fault slip distribution of the 2023 Mw 7.8 and Mw 7.6 earthquakes in Türkiye”, Earthquake Science, vol. 37, pp. 263-276, 2024, doi: 10.1016/j.eqs.2024.03.006.
  • T. Taymaz, A. Ganas, S. Yolsal-Çevikbilen, F. Vera, T. Eken, C. Erman, D. Keleş, V. Kapetanidis, S. Valkaniotis, I. Karasante, V. Tsironi, P. Gaebler, D. Melgar, and T. Öcalan, “Source Mechanism and Rupture Process of the 24 January 2020 Mw 6.7 Doğanyol–Sivrice Earthquake obtained from Seismological Waveform Analysis and Space Geodetic Observations on the East Anatolian Fault Zone (Turkey)”, Tectonophysics, vol. 804, art no. 228745, 2021, doi: 10.1016/j.tecto.2021.228745.
  • C. Bayik, G. Gurbuz, S. Abdikan, K.S. Gormus, and S.H. Kutoglu, “Investigation of Source Parameters of the 2020 Elazig-Sivrice Earthquake (Mw 6.8) in the East Anatolian Fault Zone”, Pure Appl. Geophys., vol. 179, pp. 587–598, 2022, doi: 10.1007/s00024-022-02944-x.
  • O. Gunaydin, Y. Inceyol, H. Cetin, M. Ulukavak, “Fault displacement analysis using a multidisciplinary approach on the Gerede Segment of the North Anatolian Fault Zone”, Soil Dynamics and Earthquake Engineering, vol. 164, art no. 107519, 2023, doi: 10.1016/j.soildyn.2022.107519.
  • T. Kobayashi, H. Munekane, M. Kuwahara, and H. Furui, “Insights on the 2023 Kahramanmaraş Earthquake, Turkey, from InSAR: fault locations, rupture styles and induced deformation”, Geophysical Journal International, vol. 236, pp. 1068-1088, 2024, doi: 10.1093/gji/ggad464.
  • A. Gualandi, H. Perfettini, M. Radiguet, N. Cotte, and V. Kostoglodov, “GPS deformation related to the Mw 7.3, 2014, Papanoa earthquake (Mexico) reveals the aseismic behavior of the Guerrero seismic gap”, Geophys. Res. Lett., vol. 44, pp. 6039–6047, 2017, doi:10.1002/2017GL072913.
  • Y. Wu, Z. Jiang, J. Zhao, X. Liu, W. Wei, Q. Liu, Q. Li, Z. Zou, and Z. Zhang, “Crustal deformation before the 2008 Wenchuan MS8.0 earthquake studied using GPS data”, Journal of Geodynamics, vol. 85, pp. 11-23, 2015, doi: 10.1016/j.jog.2014.12.002
  • E. Klein, C. Vigny, L. Fleitout, R. Grandin, R. Jolivet, E. Rivera, M. Métois, “A comprehensive analysis of the Illapel 2015 Mw8.3 earthquake from GPS and InSAR data”, Earth and Planetary Science Letters, vol. 469, pp. 123-134, 2017, doi: 10.1016/j.epsl.2017.04.010.
  • L. Wang, H. Gao, G. Feng, W. Xu, “Source parameters and triggering links of the earthquake sequence in central Italy from 2009 to 2016 analyzed with GPS and InSAR data”, Tectonophysics, vol. 744, pp. 285-295, 2018, doi: 10.1016/j.tecto.2018.07.013.
  • T. Taymaz, H. Eyidogan, and J. Jackson, “Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey)”, Geophysical Journal Int., vol. 106, pp. 537-550, 1991, doi: 10.1111/j.1365-246X.1991.tb06328.x.
  • C.R. Allen, “Active faulting in northern Turkey”, Contr.1577. Division of Geology Sciences, California Institute of Technology, 1969.
  • H. Cetin, H. Güneyli, L. Mayer, “Paleoseismology of the Palu–Lake Hazar segment of the East Anatolian Fault Zone, Turkey”, Tectonophysics, vol. 374, no. 3-4, pp. 163-197, 2003, doi: 10.1016/j.tecto.2003.08.003.
  • F. Bulut, M. Bohnhoff, T. Eken, C. Janssen, T. Kılıç, G. Dresen, “The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations”, Journal of Geophysical Research, vol. 117, no. B7, pp. 1-16, 2012, doi: 10.1029/2011JB008966.
  • NN. Ambraseys, and J.A. Jackson, “Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region”, Geophysical Journal International, vol. 133, no. 2, pp. 390-406, 1998, doi: 10.1046/j.1365-246X.1998.00508.x.
  • AFAD, “Preliminary Assessment Report on 06 February 2023 Pazarcık (Kahramanmaraş) Mw 7.7, Elbistan (Kahramanmaraş) Mw 7.6 Earthquakes”, Earthquake Department, pp. 1-12, 2023.
  • D. Ö. Demir and Ö. Güneş, “29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula depremi deformasyonlarının bağıl konum belirleme servis sonuçları ile incelenmesi”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 2, pp. 575–581, 2024, doi: 10.28948/ngumuh.1387411.
  • M. Hanif and S. Tongleamnak, “Quantifying crustal deformation caused by the Cianjur tectonic earthquakes magnitude 5.6 through DInSAR and GNSS technology”, Bulletin of Earth Sciences of Thailand, vol. 16, no. 1, pp. 60-71, 2024. https://ph01.tci-thaijo.org/index.php/bestjournal/article/ view/256321
  • B. Hoffman-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS - Global Navigation Satellite Systems, Austria, Springer, 2008.
  • Y.Q. Chen, A. Chrzanowski, J.M. Secord, “A strategy for the analysis of the stability of reference points in deformation surveys” Cism J ACSGS, vol. 44, no. 2, pp. 141–149, 1990, doi: 10.1139/geomat-1990-0016.
  • E. Gokalp, L. Tasci, “Deformation monitoring by GPS at embankment dams and deformation analysis” Surv Rev, vol. 41, no. 311, pp. 86–102, 2009, doi: 10.1179/003962608X390021.
  • B. Konakoglu, and E. Gokalp, “Deformation Measurements and Analysis with Robust Methods A Case Study Deriner Dam”, Turkish Journal of Science and Technology, vol. 13, no. 1, pp. 99–103, 2018.
  • S. Doganalp, B. Turgut, and C. Inal, “Deformation Analyses by Kalman Filtering and S Transformation Techniques for Height Networks”, (in Turkish), In Proc. 2nd Symposium of Engineering Surveys, 23-25 Nov. 2005, İstanbul.
  • C.O. Yigit, C. Inal, “An Improved Programme for Deformation Analysis of Vertical Networks”, In Proc. XXIII FIG Congress, Munich, Germany, 2006.
  • G. Even-Tzur, “Extended S-transformation as a tool for deformation analysis”, Survey Review, vol. 44, no. 327, pp. 315-318, 2012, doi: 10.1179/1752270612Y.0000000005.
  • H. Velsink, “On the deformation analysis of point fields”, Journal of Geodesy, vol. 89, pp. 1071-1087, 2015, doi: 10.1007/s00190-015-0835-z.
  • C. Aydin, “Effects of Displaced Reference Points on Deformation Analysis”, Journal of Surveying Engineering, vol. 143, no. 3, 2017, doi: 10.1061/(ASCE)SU.1943-5428.0000216.
There are 38 citations in total.

Details

Primary Language English
Subjects Navigation and Position Fixing, Satellite-Based Positioning, Surveying (Incl. Hydrographic Surveying)
Journal Section Research Article
Authors

Burhaneddin Bilgen 0000-0002-1955-7568

Publication Date September 1, 2025
Submission Date March 10, 2025
Acceptance Date May 27, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

IEEE B. Bilgen, “UNVEILING EARTHQUAKE-INDUCED DEFORMATIONS: INSIGHTS FROM KAHRAMANMARAŞ SEISMIC EVENT USING AUSPOS ONLINE GPS PROCESSING SERVICE”, KONJES, vol. 13, no. 3, pp. 667–682, 2025, doi: 10.36306/konjes.1655149.