Research Article
BibTex RIS Cite

Year 2019, Volume: 7 Issue: 1, 182 - 185, 15.04.2019

Abstract

References

  • [1] Cuyt, A., Petersen, V., Verdonk, B.W., Waadeland, H. and Jones, W. B. ; Handbook of Continued Fractions for Special Functions. Springer Science+Business Media B.V., 2008.
  • [2] Bozer, M. and Ozarslan, M. A. ; Notes on generalized gamma, beta and hypergeometric functions. J. Comput. Anal. Appl. 15(7), (2013), 1194-1201.
  • [3] C¸ etinkaya,A., Yagbasana, M.,I. and Kiymaz, I.O. ; The Extended Srivastava’s Triple Hypergeometric Functions and Their Integral Representations. J. Nonlinear Sci. Appl., 2016, 1-1.
  • [4] Choi, J.,Hasanov, A., Srivastava, H. M. and Turaev,M. ; Integral representations for Srivastava’s triple hypergeometric functions. Taiwanese J. Math. 15(6), (2011), 2751-2762.
  • [5] Choi,J., Hasanov,A. and Turaev,M. ; Integral representations for Srivastava’s triple hypergeometric functions HC. Honam Mathematical J. 34(4), (2012) , 473-482.
  • [6] Choi J., Rathie, A. K. and Parmar, R. k. ; Extension of extended Beta, hypergeometric function and confluent hypergeometric function. Honam Mathematical J., 36(2), 2014, 357-385.
  • [7] Dar, S.A. and Paris, R.B., A (p;v)-extension of Srivastava’s triple hypergeometric function HC and its properties, Communicated.
  • [8] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. ; Higher Transcendental Functions. Vol. 1. McGraw-Hill, New york, Toronto and London, 1953.
  • [9] Karlsson, P.W. ; Regions of convergences for hypergeometric series in three variables. Math. Scand, 48(1974), 241-248.
  • [10] Luo, M. J., Milovanovic, G. V. and Agarwal,P. ; Some results on the extended beta and extended hypergeometric functions. Applied Mathematics and Computation , 248(2014) , 631-651.
  • [11] Olver F. W. J., Lozier D. W., Boisvert R. F. and Clark C. W. (eds.); NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge, 2010.
  • [12] O zergin,E., Ozarslan,M. A. and Altin,A. ; Extension of gamma, beta and hypergeometric functions. J. Comput. Appl. Math. 235(2011) , 4601-4610.
  • [13] Parmar, R. K., Chopra, P. and Paris, R. B. ; On an Extension of Extended Beta and Hypergeometric Functions. arXiv:1502.06200 [math.CA], 22(2015).
  • [14] Rainville, E. D. ; Special Functions. Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
  • [15] Srivastava,H.M. ; Hypergeometric functions of three variables. Ganita, 15(1964) , 97-108.
  • [16] Srivastava, H. M. ; Some integrals representing triple hypergeometric functions. Rend. Circ. Mat. Palermo (Ser. 2), 16( 1967), 99-115.
  • [17] Srivastava, H. M. and Manocha, H. L. ; A Treatise on Generating Functions Halsted Press (Ellis Horwood Limited, Chichester, U.K.) John Wiley and Sons, New york, Chichester, Brisbane and Toronto, 1984.
  • [18] Srivastava,H. M. and Karlsson,P. W. ; Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
  • [19] Slater,L.J. ; Generalized Hypergeometric Functions. Cambridge University Press, Cambridge, 1966.

Evaluation of some integral representations for extended Srivastava triple hypergeometric function HC,p,v(·)

Year 2019, Volume: 7 Issue: 1, 182 - 185, 15.04.2019

Abstract

Many authors study some integral representations of the function $H_{C}(\cdot)$. Here, we obtain some integral representations for extended Srivastava triple hypergeometric function $H_{C,p,v}(\cdot)$ involving Meijer’s $G$-function of one variable, confluent hypergeometric and Whittaker functions.

References

  • [1] Cuyt, A., Petersen, V., Verdonk, B.W., Waadeland, H. and Jones, W. B. ; Handbook of Continued Fractions for Special Functions. Springer Science+Business Media B.V., 2008.
  • [2] Bozer, M. and Ozarslan, M. A. ; Notes on generalized gamma, beta and hypergeometric functions. J. Comput. Anal. Appl. 15(7), (2013), 1194-1201.
  • [3] C¸ etinkaya,A., Yagbasana, M.,I. and Kiymaz, I.O. ; The Extended Srivastava’s Triple Hypergeometric Functions and Their Integral Representations. J. Nonlinear Sci. Appl., 2016, 1-1.
  • [4] Choi, J.,Hasanov, A., Srivastava, H. M. and Turaev,M. ; Integral representations for Srivastava’s triple hypergeometric functions. Taiwanese J. Math. 15(6), (2011), 2751-2762.
  • [5] Choi,J., Hasanov,A. and Turaev,M. ; Integral representations for Srivastava’s triple hypergeometric functions HC. Honam Mathematical J. 34(4), (2012) , 473-482.
  • [6] Choi J., Rathie, A. K. and Parmar, R. k. ; Extension of extended Beta, hypergeometric function and confluent hypergeometric function. Honam Mathematical J., 36(2), 2014, 357-385.
  • [7] Dar, S.A. and Paris, R.B., A (p;v)-extension of Srivastava’s triple hypergeometric function HC and its properties, Communicated.
  • [8] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. ; Higher Transcendental Functions. Vol. 1. McGraw-Hill, New york, Toronto and London, 1953.
  • [9] Karlsson, P.W. ; Regions of convergences for hypergeometric series in three variables. Math. Scand, 48(1974), 241-248.
  • [10] Luo, M. J., Milovanovic, G. V. and Agarwal,P. ; Some results on the extended beta and extended hypergeometric functions. Applied Mathematics and Computation , 248(2014) , 631-651.
  • [11] Olver F. W. J., Lozier D. W., Boisvert R. F. and Clark C. W. (eds.); NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge, 2010.
  • [12] O zergin,E., Ozarslan,M. A. and Altin,A. ; Extension of gamma, beta and hypergeometric functions. J. Comput. Appl. Math. 235(2011) , 4601-4610.
  • [13] Parmar, R. K., Chopra, P. and Paris, R. B. ; On an Extension of Extended Beta and Hypergeometric Functions. arXiv:1502.06200 [math.CA], 22(2015).
  • [14] Rainville, E. D. ; Special Functions. Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
  • [15] Srivastava,H.M. ; Hypergeometric functions of three variables. Ganita, 15(1964) , 97-108.
  • [16] Srivastava, H. M. ; Some integrals representing triple hypergeometric functions. Rend. Circ. Mat. Palermo (Ser. 2), 16( 1967), 99-115.
  • [17] Srivastava, H. M. and Manocha, H. L. ; A Treatise on Generating Functions Halsted Press (Ellis Horwood Limited, Chichester, U.K.) John Wiley and Sons, New york, Chichester, Brisbane and Toronto, 1984.
  • [18] Srivastava,H. M. and Karlsson,P. W. ; Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
  • [19] Slater,L.J. ; Generalized Hypergeometric Functions. Cambridge University Press, Cambridge, 1966.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Showkat Ahmad Dar

Submission Date April 10, 2018
Acceptance Date March 4, 2019
Publication Date April 15, 2019
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Dar, S. A. (2019). Evaluation of some integral representations for extended Srivastava triple hypergeometric function HC,p,v(·). Konuralp Journal of Mathematics, 7(1), 182-185. https://izlik.org/JA59YW64ZC
AMA 1.Dar SA. Evaluation of some integral representations for extended Srivastava triple hypergeometric function HC,p,v(·). Konuralp J. Math. 2019;7(1):182-185. https://izlik.org/JA59YW64ZC
Chicago Dar, Showkat Ahmad. 2019. “Evaluation of Some Integral Representations for Extended Srivastava Triple Hypergeometric Function HC,p,v(·)”. Konuralp Journal of Mathematics 7 (1): 182-85. https://izlik.org/JA59YW64ZC.
EndNote Dar SA (April 1, 2019) Evaluation of some integral representations for extended Srivastava triple hypergeometric function HC,p,v(·). Konuralp Journal of Mathematics 7 1 182–185.
IEEE [1]S. A. Dar, “Evaluation of some integral representations for extended Srivastava triple hypergeometric function HC,p,v(·)”, Konuralp J. Math., vol. 7, no. 1, pp. 182–185, Apr. 2019, [Online]. Available: https://izlik.org/JA59YW64ZC
ISNAD Dar, Showkat Ahmad. “Evaluation of Some Integral Representations for Extended Srivastava Triple Hypergeometric Function HC,p,v(·)”. Konuralp Journal of Mathematics 7/1 (April 1, 2019): 182-185. https://izlik.org/JA59YW64ZC.
JAMA 1.Dar SA. Evaluation of some integral representations for extended Srivastava triple hypergeometric function HC,p,v(·). Konuralp J. Math. 2019;7:182–185.
MLA Dar, Showkat Ahmad. “Evaluation of Some Integral Representations for Extended Srivastava Triple Hypergeometric Function HC,p,v(·)”. Konuralp Journal of Mathematics, vol. 7, no. 1, Apr. 2019, pp. 182-5, https://izlik.org/JA59YW64ZC.
Vancouver 1.Dar SA. Evaluation of some integral representations for extended Srivastava triple hypergeometric function HC,p,v(·). Konuralp J. Math. [Internet]. 2019 Apr. 1;7(1):182-5. Available from: https://izlik.org/JA59YW64ZC
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.