Research Article
BibTex RIS Cite

ON A NEW CLASS OF s-TYPE OPERATORS

Year 2015, Volume: 3 Issue: 1, 1 - 11, 01.04.2015

Abstract

In this paper, we introduce a new class of operators by using s-numbers and the sequence space Z(u; v; `p) for 1 < p < 1. We prove that this class is a quasi-Banach operator ideal. Also, we give some properties of the quasi-Banach operator ideal. Lastly, we establish some inclusion relations among the operator ideals formed by di erent s-number sequences.

References

  • [1] B. Altay and F. Başar, Generalization of the sequence space `(p) derived by weighted mean, J. Math. Anal. Appl. Vol:330 (2007), 174-185.
  • [2] J. Burgoyne, Denseness of the generalized eigenvectors of a discrete operator in a Banach space, J. Operator Theory Vol:33 (1995), 279-297.
  • [3] Gh. Constantin, Operators of ces 􀀀 p type, Rend. Acc. Naz. Lincei. Vol:52 No.8 (1972), 875{878.
  • [4] W. B. Johnson and J. Lindenstrauss, Handbook of the geometry of banach spaces, Elsevier Science B. V., North-Holand, 2001.
  • [5] E. Kreyszig, Introductory functional analysis with applications, John Wiley Sons. Inc., The United States of America, 1978.
  • [6] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxforf Vol:18 No.2 (1967), 345-355.
  • [7] A. Maji and P. D. Srivastava, On operator ideals using weighted Cesaro sequence space, Egyp. Math. Soc., Vol:22 (2014), 446-452.
  • [8] E. Malkowsky and E. Sava, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comp. Vol:147 (2004), 333-345.
  • [9] A. Pietsch, Einige neue klassen von kompakten linearen Abbildungen, Rev. Math. Pures Appl. Vol:8 (1963), 427-447.
  • [10] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
  • [11] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. Vol:51 (1974), 201-223.
  • [12] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, New York, 1986.
  • [13] J. S. Shiue, On the Cesaro sequence spaces, Tamkang J. Math. Vol:1 No.1 (1970), 19-25.
Year 2015, Volume: 3 Issue: 1, 1 - 11, 01.04.2015

Abstract

References

  • [1] B. Altay and F. Başar, Generalization of the sequence space `(p) derived by weighted mean, J. Math. Anal. Appl. Vol:330 (2007), 174-185.
  • [2] J. Burgoyne, Denseness of the generalized eigenvectors of a discrete operator in a Banach space, J. Operator Theory Vol:33 (1995), 279-297.
  • [3] Gh. Constantin, Operators of ces 􀀀 p type, Rend. Acc. Naz. Lincei. Vol:52 No.8 (1972), 875{878.
  • [4] W. B. Johnson and J. Lindenstrauss, Handbook of the geometry of banach spaces, Elsevier Science B. V., North-Holand, 2001.
  • [5] E. Kreyszig, Introductory functional analysis with applications, John Wiley Sons. Inc., The United States of America, 1978.
  • [6] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxforf Vol:18 No.2 (1967), 345-355.
  • [7] A. Maji and P. D. Srivastava, On operator ideals using weighted Cesaro sequence space, Egyp. Math. Soc., Vol:22 (2014), 446-452.
  • [8] E. Malkowsky and E. Sava, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comp. Vol:147 (2004), 333-345.
  • [9] A. Pietsch, Einige neue klassen von kompakten linearen Abbildungen, Rev. Math. Pures Appl. Vol:8 (1963), 427-447.
  • [10] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
  • [11] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. Vol:51 (1974), 201-223.
  • [12] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, New York, 1986.
  • [13] J. S. Shiue, On the Cesaro sequence spaces, Tamkang J. Math. Vol:1 No.1 (1970), 19-25.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emrah Evren Kara This is me

Merve İlkhan

Publication Date April 1, 2015
Submission Date June 10, 2014
Published in Issue Year 2015 Volume: 3 Issue: 1

Cite

APA Kara, E. E., & İlkhan, M. (2015). ON A NEW CLASS OF s-TYPE OPERATORS. Konuralp Journal of Mathematics, 3(1), 1-11.
AMA Kara EE, İlkhan M. ON A NEW CLASS OF s-TYPE OPERATORS. Konuralp J. Math. April 2015;3(1):1-11.
Chicago Kara, Emrah Evren, and Merve İlkhan. “ON A NEW CLASS OF S-TYPE OPERATORS”. Konuralp Journal of Mathematics 3, no. 1 (April 2015): 1-11.
EndNote Kara EE, İlkhan M (April 1, 2015) ON A NEW CLASS OF s-TYPE OPERATORS. Konuralp Journal of Mathematics 3 1 1–11.
IEEE E. E. Kara and M. İlkhan, “ON A NEW CLASS OF s-TYPE OPERATORS”, Konuralp J. Math., vol. 3, no. 1, pp. 1–11, 2015.
ISNAD Kara, Emrah Evren - İlkhan, Merve. “ON A NEW CLASS OF S-TYPE OPERATORS”. Konuralp Journal of Mathematics 3/1 (April 2015), 1-11.
JAMA Kara EE, İlkhan M. ON A NEW CLASS OF s-TYPE OPERATORS. Konuralp J. Math. 2015;3:1–11.
MLA Kara, Emrah Evren and Merve İlkhan. “ON A NEW CLASS OF S-TYPE OPERATORS”. Konuralp Journal of Mathematics, vol. 3, no. 1, 2015, pp. 1-11.
Vancouver Kara EE, İlkhan M. ON A NEW CLASS OF s-TYPE OPERATORS. Konuralp J. Math. 2015;3(1):1-11.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.