Research Article
BibTex RIS Cite

ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC FUZZY PROJECTIVE PLANE

Year 2015, Volume: 3 Issue: 1, 12 - 15, 01.04.2015

Abstract

In this work, we introduce that intuitionistic fuzzy versions of some classical con gurations in projective plane are valid in intuitionistic fuzzy projective plane with base Desarguesian or Pappian plane.

References

  • [1] Z. Akça, A. Bayar, S. Ekmekçi, On the classi cation of fuzzy projective lines of fuzzy 3- dimensional projective space, Communications Mathematics and Statistics, 55 No.2 (2006) 17-23.
  • [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96. [3] A. Bayar, S. Ekmekci, Z. Akca, A note on bered projective plane geometry, Information Sciences, 178 (2008) 1257-1262.
  • [4] A. Bayar, S. Ekmekçi, On the Menelaus and Ceva 6- gures in the bered projective planes, Abstract and Applied Analysis, (2014) 1-5.
  • [5] D. Çoker, M. Demirci, On intuitionistic fuzzy points, NIFS 1 (1995) 2, 79-84.
  • [6] S. Ekmekci , Z. Akça, A. Bayar, On the classi cation of fuzzy projective planes of fuzzy 3-dimensional projective space, Chaos Solitons & Fractals, 40 (2009) 2146-2151.
  • [7] E. A. Ghassan, Intuitionistic fuzzy projective geometry, J. of Al-Ambar University for Pure Science, 3 (2009) 1-5.
  • [8] D. R. Hughes, F.C. Piper, Projective planes, Springer, New York, Heidelberg, Berlin, 1973. [9] L. Kuijken, H. Van Maldeghem, Fibered geometries, Discrete Mathematics 255 (2002) 259- 274.
  • [10] L. Kuijken, H. Van Maldeghem, E.E. Kerre, Fuzzy projective geometries from fuzzy vector spaces, in: A. Billot et al. (Eds.), Information Processing and Management of Uncertainty in Knowledge-based Systems, Editions Medicales et Scienti ques, Paris, La Sorbonne, 1998, pp. 1331-1338.
  • [11] N.Turanlı, An overview of intuitionistic fuzzy supratopological spaces, Hacettepe Journal of Mathematics and Statistics, 32(2003)-(17-26).
  • [12] L. Zadeh, Fuzzy sets, Inform. Control, 8 (1965) 338-358.
Year 2015, Volume: 3 Issue: 1, 12 - 15, 01.04.2015

Abstract

References

  • [1] Z. Akça, A. Bayar, S. Ekmekçi, On the classi cation of fuzzy projective lines of fuzzy 3- dimensional projective space, Communications Mathematics and Statistics, 55 No.2 (2006) 17-23.
  • [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96. [3] A. Bayar, S. Ekmekci, Z. Akca, A note on bered projective plane geometry, Information Sciences, 178 (2008) 1257-1262.
  • [4] A. Bayar, S. Ekmekçi, On the Menelaus and Ceva 6- gures in the bered projective planes, Abstract and Applied Analysis, (2014) 1-5.
  • [5] D. Çoker, M. Demirci, On intuitionistic fuzzy points, NIFS 1 (1995) 2, 79-84.
  • [6] S. Ekmekci , Z. Akça, A. Bayar, On the classi cation of fuzzy projective planes of fuzzy 3-dimensional projective space, Chaos Solitons & Fractals, 40 (2009) 2146-2151.
  • [7] E. A. Ghassan, Intuitionistic fuzzy projective geometry, J. of Al-Ambar University for Pure Science, 3 (2009) 1-5.
  • [8] D. R. Hughes, F.C. Piper, Projective planes, Springer, New York, Heidelberg, Berlin, 1973. [9] L. Kuijken, H. Van Maldeghem, Fibered geometries, Discrete Mathematics 255 (2002) 259- 274.
  • [10] L. Kuijken, H. Van Maldeghem, E.E. Kerre, Fuzzy projective geometries from fuzzy vector spaces, in: A. Billot et al. (Eds.), Information Processing and Management of Uncertainty in Knowledge-based Systems, Editions Medicales et Scienti ques, Paris, La Sorbonne, 1998, pp. 1331-1338.
  • [11] N.Turanlı, An overview of intuitionistic fuzzy supratopological spaces, Hacettepe Journal of Mathematics and Statistics, 32(2003)-(17-26).
  • [12] L. Zadeh, Fuzzy sets, Inform. Control, 8 (1965) 338-358.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

A. Bayar

S. Ekmekçi

Publication Date April 1, 2015
Submission Date June 11, 2013
Published in Issue Year 2015 Volume: 3 Issue: 1

Cite

APA Bayar, A., & Ekmekçi, S. (2015). ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC FUZZY PROJECTIVE PLANE. Konuralp Journal of Mathematics, 3(1), 12-15.
AMA Bayar A, Ekmekçi S. ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC FUZZY PROJECTIVE PLANE. Konuralp J. Math. April 2015;3(1):12-15.
Chicago Bayar, A., and S. Ekmekçi. “ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC FUZZY PROJECTIVE PLANE”. Konuralp Journal of Mathematics 3, no. 1 (April 2015): 12-15.
EndNote Bayar A, Ekmekçi S (April 1, 2015) ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC FUZZY PROJECTIVE PLANE. Konuralp Journal of Mathematics 3 1 12–15.
IEEE A. Bayar and S. Ekmekçi, “ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC FUZZY PROJECTIVE PLANE”, Konuralp J. Math., vol. 3, no. 1, pp. 12–15, 2015.
ISNAD Bayar, A. - Ekmekçi, S. “ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC FUZZY PROJECTIVE PLANE”. Konuralp Journal of Mathematics 3/1 (April 2015), 12-15.
JAMA Bayar A, Ekmekçi S. ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC FUZZY PROJECTIVE PLANE. Konuralp J. Math. 2015;3:12–15.
MLA Bayar, A. and S. Ekmekçi. “ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC FUZZY PROJECTIVE PLANE”. Konuralp Journal of Mathematics, vol. 3, no. 1, 2015, pp. 12-15.
Vancouver Bayar A, Ekmekçi S. ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC FUZZY PROJECTIVE PLANE. Konuralp J. Math. 2015;3(1):12-5.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.