Research Article
BibTex RIS Cite

EFFECT OF THE CAVITY ANGLE ON FLOW STRUCTURES IN AN ANNULAR WEDGE CAVITY

Year 2015, Volume: 3 Issue: 2, 1 - 16, 01.10.2015

Abstract

developments in the all fields of Mathematics and applications in all interdisciplinary areas. The journal is published twice, the two dimensional biharmonic equation is solved analytically. The flow is governed by two physical control parameters: the cavity angle and the ratio of the upper and lower lid speeds (S = U1 U2 ). By varying for each S, the effect of cavity angle on the streamline patterns and their bifurcations are investigated.

References

  • [1] S. Arun, A. Satheesh, Analysis of flow behaviour in a two sided lid driven cavity using lattice boltzmann technique, Alexandria Engineering Journal, (2015), http://dx.doi.org/10.1016/j.aej.2015.06.005.
  • [2] A. Deliceoğlu, S.H. Aydın, Flow bifurcation and eddy genesis in an L-shaped cavity, Comput. Fluids 73 (2013), 24A ¸S46.
  • [3] E. Erturk, B. Dursun, Numerical solution of 2-D steady incompressible flow in a driven skewed cavity, Z. Angew.Math.Mech. 87 (2007), 377â˘A ¸S392.
  • [4] E. Erturk, O. Gokcol, Fine grid numerical solutions of triangular cavity flow, Eur. Phys. J. Appl. Phys. 38 (2007), 97â˘A ¸S105.
  • [5] Fettis, H. E., Complex roots of s inz = a z , c o s z = a z and c o shz = a z , Math. of Comp. 30, 135 (1976), 541-545.
  • [6] Gaskell, P. H., Savage, M. D., Summers, J. L. and Thompson, H. M., Modeling and analysis of meniscus roll coating, J. FluidMech. 298 (1995), 113–137.
  • [7] P.H. Gaskell, M.D. Savage, M. Wilson, Flow structures in a half-filled annulus between rotating co-axial cylinders, J. FluidMech. 337 (1997), 263â˘A¸S282.
  • [8] F. Gürcan, P.H. Gaskell, M.D. Savage, M. Wilson, Eddy genesis and transformation of Stokes flow in a double-lid-driven cavity, Proc. Inst.Mech. Eng. C 217, 3 (2003), 353â˘A ¸S364.
  • [9] Gürcan, F. and Bilgil, H., Bifurcations and eddy genesis of Stokes flow within a sectorial cavity, European Journal ofMechanics - B/Fluids. 39 (2013), 42-51.
  • [10] F. Gürcan, H. Bilgil, A. Adahin, Bifurcations and eddy genesis of Stokes flow within a sectorial cavity PART II: Co-moving lids, European Journal of Mechanics - B/Fluids, (2015), dx.doi.org/10.1016/j.euromechflu.2015.02.008.
  • [11] Gürcan, F., Flow bifurcations in rectangular, lid-driven cavity flows. PhD Thesis, University of Leeds, 1996.
  • [12] Hellebrand H., Tape casting. In Materials Science and Technology–Processing of Ceramics, Part I, Vol. 17 A, ed. R. J. Brook. VCH,Weinheim, (1996), 189-260.
  • [13] S.A. Khuri, Biorthogonal series solution of stokes flowproblems in sectorial regions, SIAM J. Appl.Math. 56, 1 (1996), 19â˘A¸S39.
  • [14] Middleman S., Fundamentals of Polymer Processing,McGraw-Hill, New York, 1977.
  • [15] C. Ozalp, A. Pinarbasi, B. Sahin, Experimental measurement of flow past cavities of different shapes, Experimental Thermal and Fluid Science, 34, 5, (2010), 505-515.
  • [16] Robbins, C. I. and Smith, R. C. T., A table of roots of Sinz = 􀀀z , Phil.Mag. 39,7 (1948), 1005.
  • [17] Scholle M, Haas A, Aksel N, Thompson HM, Hewson RW, Gaskell PH, The effect of locally induced flow structure on global heat transfer for plane laminar shear flow, International Journal of Heat and Fluid Flow. 30, 2 (2009), 175-185.
Year 2015, Volume: 3 Issue: 2, 1 - 16, 01.10.2015

Abstract

References

  • [1] S. Arun, A. Satheesh, Analysis of flow behaviour in a two sided lid driven cavity using lattice boltzmann technique, Alexandria Engineering Journal, (2015), http://dx.doi.org/10.1016/j.aej.2015.06.005.
  • [2] A. Deliceoğlu, S.H. Aydın, Flow bifurcation and eddy genesis in an L-shaped cavity, Comput. Fluids 73 (2013), 24A ¸S46.
  • [3] E. Erturk, B. Dursun, Numerical solution of 2-D steady incompressible flow in a driven skewed cavity, Z. Angew.Math.Mech. 87 (2007), 377â˘A ¸S392.
  • [4] E. Erturk, O. Gokcol, Fine grid numerical solutions of triangular cavity flow, Eur. Phys. J. Appl. Phys. 38 (2007), 97â˘A ¸S105.
  • [5] Fettis, H. E., Complex roots of s inz = a z , c o s z = a z and c o shz = a z , Math. of Comp. 30, 135 (1976), 541-545.
  • [6] Gaskell, P. H., Savage, M. D., Summers, J. L. and Thompson, H. M., Modeling and analysis of meniscus roll coating, J. FluidMech. 298 (1995), 113–137.
  • [7] P.H. Gaskell, M.D. Savage, M. Wilson, Flow structures in a half-filled annulus between rotating co-axial cylinders, J. FluidMech. 337 (1997), 263â˘A¸S282.
  • [8] F. Gürcan, P.H. Gaskell, M.D. Savage, M. Wilson, Eddy genesis and transformation of Stokes flow in a double-lid-driven cavity, Proc. Inst.Mech. Eng. C 217, 3 (2003), 353â˘A ¸S364.
  • [9] Gürcan, F. and Bilgil, H., Bifurcations and eddy genesis of Stokes flow within a sectorial cavity, European Journal ofMechanics - B/Fluids. 39 (2013), 42-51.
  • [10] F. Gürcan, H. Bilgil, A. Adahin, Bifurcations and eddy genesis of Stokes flow within a sectorial cavity PART II: Co-moving lids, European Journal of Mechanics - B/Fluids, (2015), dx.doi.org/10.1016/j.euromechflu.2015.02.008.
  • [11] Gürcan, F., Flow bifurcations in rectangular, lid-driven cavity flows. PhD Thesis, University of Leeds, 1996.
  • [12] Hellebrand H., Tape casting. In Materials Science and Technology–Processing of Ceramics, Part I, Vol. 17 A, ed. R. J. Brook. VCH,Weinheim, (1996), 189-260.
  • [13] S.A. Khuri, Biorthogonal series solution of stokes flowproblems in sectorial regions, SIAM J. Appl.Math. 56, 1 (1996), 19â˘A¸S39.
  • [14] Middleman S., Fundamentals of Polymer Processing,McGraw-Hill, New York, 1977.
  • [15] C. Ozalp, A. Pinarbasi, B. Sahin, Experimental measurement of flow past cavities of different shapes, Experimental Thermal and Fluid Science, 34, 5, (2010), 505-515.
  • [16] Robbins, C. I. and Smith, R. C. T., A table of roots of Sinz = 􀀀z , Phil.Mag. 39,7 (1948), 1005.
  • [17] Scholle M, Haas A, Aksel N, Thompson HM, Hewson RW, Gaskell PH, The effect of locally induced flow structure on global heat transfer for plane laminar shear flow, International Journal of Heat and Fluid Flow. 30, 2 (2009), 175-185.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Halis Bılgıl This is me

Zarife Dolek This is me

Publication Date October 1, 2015
Submission Date July 10, 2014
Published in Issue Year 2015 Volume: 3 Issue: 2

Cite

APA Bılgıl, H., & Dolek, Z. (2015). EFFECT OF THE CAVITY ANGLE ON FLOW STRUCTURES IN AN ANNULAR WEDGE CAVITY. Konuralp Journal of Mathematics, 3(2), 1-16.
AMA Bılgıl H, Dolek Z. EFFECT OF THE CAVITY ANGLE ON FLOW STRUCTURES IN AN ANNULAR WEDGE CAVITY. Konuralp J. Math. October 2015;3(2):1-16.
Chicago Bılgıl, Halis, and Zarife Dolek. “EFFECT OF THE CAVITY ANGLE ON FLOW STRUCTURES IN AN ANNULAR WEDGE CAVITY”. Konuralp Journal of Mathematics 3, no. 2 (October 2015): 1-16.
EndNote Bılgıl H, Dolek Z (October 1, 2015) EFFECT OF THE CAVITY ANGLE ON FLOW STRUCTURES IN AN ANNULAR WEDGE CAVITY. Konuralp Journal of Mathematics 3 2 1–16.
IEEE H. Bılgıl and Z. Dolek, “EFFECT OF THE CAVITY ANGLE ON FLOW STRUCTURES IN AN ANNULAR WEDGE CAVITY”, Konuralp J. Math., vol. 3, no. 2, pp. 1–16, 2015.
ISNAD Bılgıl, Halis - Dolek, Zarife. “EFFECT OF THE CAVITY ANGLE ON FLOW STRUCTURES IN AN ANNULAR WEDGE CAVITY”. Konuralp Journal of Mathematics 3/2 (October 2015), 1-16.
JAMA Bılgıl H, Dolek Z. EFFECT OF THE CAVITY ANGLE ON FLOW STRUCTURES IN AN ANNULAR WEDGE CAVITY. Konuralp J. Math. 2015;3:1–16.
MLA Bılgıl, Halis and Zarife Dolek. “EFFECT OF THE CAVITY ANGLE ON FLOW STRUCTURES IN AN ANNULAR WEDGE CAVITY”. Konuralp Journal of Mathematics, vol. 3, no. 2, 2015, pp. 1-16.
Vancouver Bılgıl H, Dolek Z. EFFECT OF THE CAVITY ANGLE ON FLOW STRUCTURES IN AN ANNULAR WEDGE CAVITY. Konuralp J. Math. 2015;3(2):1-16.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.