Research Article
BibTex RIS Cite

CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS

Year 2015, Volume: 3 Issue: 2, 89 - 99, 01.10.2015

Abstract

In this paper, by using the proof method of Xue, Ra q and Zhou[19] some strong convergence results of multi-step iterative sequence are proved for nearly uniformly L- Lipschitzian mappings in real Banach spaces. Our results generalise and improve some recent known results.

References

  • [1] Chang, S. S. Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 129 , 99 (2000), 845-853.
  • [2] Chang, S. S., Cho, Y. J., Lee, B. S. and Kang, S. H. Iterative approximation of xed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces , J. Math. Anal. Appl., 224 (1998), 165-194.
  • [3] Chang, S. S., Cho, Y. J., and Kim, J. K. Some results for uniformly L-Lipschitzian mappings in Banach spaces , Appl. Math. Lett., 22, (2009), 121-125.
  • [4] Goebel, K. and Kirk, W. A. A xed point theorem for asymptotically nonexpansive mappings , Proc. Amer. Math. Soc., Vol. 35 , (1972), 171-174.
  • [5] Ishikawa, S. Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150.
  • [6] Kim, J. K., Sahu, D. R. and Nam, Y. M.Convergence theorem for xed points of nearly uniformly L􀀀 Lipschitzian asymptotically generalized 􀀀 hemicontractive mappings, Nonl. Anal., 71, 99(2009), e2833- e2838.
  • [7] Mann, W.R. Mean value methods in iteration, Proc. Amer. Math. Soc., 4, 99 (1953), 506-610 .
  • [8] Moore, C. and Nnoli, B. V. C. Iterative solution of nonlinear equations involving set-valued uniformly accretive operators , Comput. Math. Anal. Appl., 42, (2001), 131-140 .
  • [9] Mogbademu, A.A. and Xue, Z. Some convergence results for nonlinear maps in Banach spaces, Int. J. Open Problems Compt. Math., Vol. 6, (2013), 1- 10.
  • [10] Mogbademu, A.A. Convergence theorem of modi ed Noor iteration for nonlinear maps in Banach spaces, J. Adv. Math. Stud., Vol. 7 (2014), nos. 1,56-64.
  • [11] Noor, M.A. Three-step iterative algorithms for multi-valued quasi variational inclusions J. Math. Anal. Appl., 225 (2001), 589-604.
  • [12] Noor, M.A., Kassias, T. M. and Huang, Z. Three-step iterations for nonlinear accretive operator equations , J. Math. Anal. Appl., 274 (2002), 59-68.
  • [13] Ofoedu, E.U. Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseu- docontractive mapping in real Banach space , J. Math. Anal. Appl., 321 (2006), 722-728.
  • [14] Olaleru, J.O. and Mogbademu, A.A. Modi ed Noor iterative procedure for uniformly con- tinuous mappings in Banach spaces, Boletin de la Asociacion Matematica Venezolana, Vol. XVIII, No. 2 (2011), 127- 135.
  • [15] Ra q, A., Acu, A. M. and Sofonea, F. An iterative algorithm for two asymptotically pseu- docontractive mappings , Int. J. Open Problems Compt. Math., Vol. 2 (2009), 371- 382.
  • [16] Rhoades, B.E. and Soltuz, S.M. The equivalence between Mann-Ishikawa iterations and multistep iteration , Nonl. Anal.: Theory, Methods and Applications, Vol. 58 (2004), 218- 228.
  • [17] Schu, J. Iterative construction of xed points of asymptotically nonexpansive mappings , J. Math. Anal. Appl., 158 (1999), 407-413.
  • [18] Sahu, D. R. Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces , Comment. Math. Univ. Carolin 46 (4) (2005), 653-666.
  • [19] Xue, Z., Ra q, A. and Zhou, H. On the convergence of multi-step iteration for uniformly continuous 􀀀 Hemicontractive mappings, Abstract and Applied Analysis, Vol. 2012, Article ID 386983, (2012), 1-9.
Year 2015, Volume: 3 Issue: 2, 89 - 99, 01.10.2015

Abstract

References

  • [1] Chang, S. S. Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 129 , 99 (2000), 845-853.
  • [2] Chang, S. S., Cho, Y. J., Lee, B. S. and Kang, S. H. Iterative approximation of xed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces , J. Math. Anal. Appl., 224 (1998), 165-194.
  • [3] Chang, S. S., Cho, Y. J., and Kim, J. K. Some results for uniformly L-Lipschitzian mappings in Banach spaces , Appl. Math. Lett., 22, (2009), 121-125.
  • [4] Goebel, K. and Kirk, W. A. A xed point theorem for asymptotically nonexpansive mappings , Proc. Amer. Math. Soc., Vol. 35 , (1972), 171-174.
  • [5] Ishikawa, S. Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150.
  • [6] Kim, J. K., Sahu, D. R. and Nam, Y. M.Convergence theorem for xed points of nearly uniformly L􀀀 Lipschitzian asymptotically generalized 􀀀 hemicontractive mappings, Nonl. Anal., 71, 99(2009), e2833- e2838.
  • [7] Mann, W.R. Mean value methods in iteration, Proc. Amer. Math. Soc., 4, 99 (1953), 506-610 .
  • [8] Moore, C. and Nnoli, B. V. C. Iterative solution of nonlinear equations involving set-valued uniformly accretive operators , Comput. Math. Anal. Appl., 42, (2001), 131-140 .
  • [9] Mogbademu, A.A. and Xue, Z. Some convergence results for nonlinear maps in Banach spaces, Int. J. Open Problems Compt. Math., Vol. 6, (2013), 1- 10.
  • [10] Mogbademu, A.A. Convergence theorem of modi ed Noor iteration for nonlinear maps in Banach spaces, J. Adv. Math. Stud., Vol. 7 (2014), nos. 1,56-64.
  • [11] Noor, M.A. Three-step iterative algorithms for multi-valued quasi variational inclusions J. Math. Anal. Appl., 225 (2001), 589-604.
  • [12] Noor, M.A., Kassias, T. M. and Huang, Z. Three-step iterations for nonlinear accretive operator equations , J. Math. Anal. Appl., 274 (2002), 59-68.
  • [13] Ofoedu, E.U. Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseu- docontractive mapping in real Banach space , J. Math. Anal. Appl., 321 (2006), 722-728.
  • [14] Olaleru, J.O. and Mogbademu, A.A. Modi ed Noor iterative procedure for uniformly con- tinuous mappings in Banach spaces, Boletin de la Asociacion Matematica Venezolana, Vol. XVIII, No. 2 (2011), 127- 135.
  • [15] Ra q, A., Acu, A. M. and Sofonea, F. An iterative algorithm for two asymptotically pseu- docontractive mappings , Int. J. Open Problems Compt. Math., Vol. 2 (2009), 371- 382.
  • [16] Rhoades, B.E. and Soltuz, S.M. The equivalence between Mann-Ishikawa iterations and multistep iteration , Nonl. Anal.: Theory, Methods and Applications, Vol. 58 (2004), 218- 228.
  • [17] Schu, J. Iterative construction of xed points of asymptotically nonexpansive mappings , J. Math. Anal. Appl., 158 (1999), 407-413.
  • [18] Sahu, D. R. Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces , Comment. Math. Univ. Carolin 46 (4) (2005), 653-666.
  • [19] Xue, Z., Ra q, A. and Zhou, H. On the convergence of multi-step iteration for uniformly continuous 􀀀 Hemicontractive mappings, Abstract and Applied Analysis, Vol. 2012, Article ID 386983, (2012), 1-9.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Adesanmi Alao Mogbademu

Publication Date October 1, 2015
Submission Date July 10, 2014
Published in Issue Year 2015 Volume: 3 Issue: 2

Cite

APA Mogbademu, A. A. (2015). CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS. Konuralp Journal of Mathematics, 3(2), 89-99.
AMA Mogbademu AA. CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS. Konuralp J. Math. October 2015;3(2):89-99.
Chicago Mogbademu, Adesanmi Alao. “CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS”. Konuralp Journal of Mathematics 3, no. 2 (October 2015): 89-99.
EndNote Mogbademu AA (October 1, 2015) CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS. Konuralp Journal of Mathematics 3 2 89–99.
IEEE A. A. Mogbademu, “CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS”, Konuralp J. Math., vol. 3, no. 2, pp. 89–99, 2015.
ISNAD Mogbademu, Adesanmi Alao. “CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS”. Konuralp Journal of Mathematics 3/2 (October 2015), 89-99.
JAMA Mogbademu AA. CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS. Konuralp J. Math. 2015;3:89–99.
MLA Mogbademu, Adesanmi Alao. “CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS”. Konuralp Journal of Mathematics, vol. 3, no. 2, 2015, pp. 89-99.
Vancouver Mogbademu AA. CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS. Konuralp J. Math. 2015;3(2):89-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.