Research Article
BibTex RIS Cite

THE L-SECTIONAL CURVATURE OF S-MANIFOLDS

Year 2016, Volume: 4 Issue: 1, 246 - 253, 01.04.2016

Abstract

We investigate L-sectional curvature of S-manifolds with respect to the Riemannian connection and to certain semi-symmetric metric and non- metric connections naturally related with the structure, obtaining conditions for them to be constant and giving examples of S-manifolds in such conditions. Moreover, we calculate the scalar curvature in all the cases.

References

  • [1] M. Akif Akyol, A. Turgut Vanli and L.M. Fernandez, Curvature properties of a semi-symmetric metric connection de ned on S-manifolds, Ann. Polonici Math., Vol:107, No.1 (2013), 71-86.
  • [2] M. Akif Akyol, A. Turgut Vanli and L.M. Fernandez, Semi-symmetry properties of S-manifolds endowed with a semi-symmetric non metric connection, to appear in An. Sti. Univ. \Al. I. Cuza" (Iasi) (2015).
  • [3] D.E. Blair, Geometry of manifolds with structural group U(n)O(s), J. Di er. Geom., Vol:4 (1970), 155-167.
  • [4] D.E. Blair, On a generalization of the Hopf bration, An. Sti. Univ. \Al. I. Cuza" (Iasi), Vol:17 (1971), 171-177.
  • [5] D.E. Blair and G.D. Ludden, Hypersurfaces in almost contact manifolds, T^ohoku Math. J., Vol:21 (1969), 354-362.
  • [6] J.L. Cabrerizo, L.M. Fernandez and M. Fernandez, The curvature tensor elds on f-manifolds with complemented frames, An. Sti. Univ. \Al. I. Cuza" (Iasi), Vol:36 (1990), 151-161.
  • [7] A. Friedmann and J.A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragung, Math. Zeitschr., Vol:21 (1924), 211-223.
  • [8] S.I. Goldberg and K.Yano, Globally framed f-manifolds, Illinois J. Math., Vol:15 (1971), 456-474.
  • [9] S.I. Goldberg and K.Yano, On normal globally framed manifolds, T^ohoku Math. J., Vol:22 (1970), 362-370.
  • [10] I. Hasegawa, Y. Okuyama and T. Abe, On p-th Sasakian manifolds, J. Hokkaido Univ. of Education (Section II A), Vol:37 (1986), 1-16.
  • [11] H.A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc., Vol 34 (1932), 27-50.
  • [12] M. Kobayashi and S. Tsuchiya, Invariant submanifolds of an f-manifold with complemented frames, Kodai Math. Sem. Rep., Vol:24 (1972), 430-450.
  • [13] K. Yano, On a structure de ned by a tensor eld f of type (1,1) satisfying f3 + f = 0, Tensor, N. S., Vol:14 (1963), 99-109.
Year 2016, Volume: 4 Issue: 1, 246 - 253, 01.04.2016

Abstract

References

  • [1] M. Akif Akyol, A. Turgut Vanli and L.M. Fernandez, Curvature properties of a semi-symmetric metric connection de ned on S-manifolds, Ann. Polonici Math., Vol:107, No.1 (2013), 71-86.
  • [2] M. Akif Akyol, A. Turgut Vanli and L.M. Fernandez, Semi-symmetry properties of S-manifolds endowed with a semi-symmetric non metric connection, to appear in An. Sti. Univ. \Al. I. Cuza" (Iasi) (2015).
  • [3] D.E. Blair, Geometry of manifolds with structural group U(n)O(s), J. Di er. Geom., Vol:4 (1970), 155-167.
  • [4] D.E. Blair, On a generalization of the Hopf bration, An. Sti. Univ. \Al. I. Cuza" (Iasi), Vol:17 (1971), 171-177.
  • [5] D.E. Blair and G.D. Ludden, Hypersurfaces in almost contact manifolds, T^ohoku Math. J., Vol:21 (1969), 354-362.
  • [6] J.L. Cabrerizo, L.M. Fernandez and M. Fernandez, The curvature tensor elds on f-manifolds with complemented frames, An. Sti. Univ. \Al. I. Cuza" (Iasi), Vol:36 (1990), 151-161.
  • [7] A. Friedmann and J.A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragung, Math. Zeitschr., Vol:21 (1924), 211-223.
  • [8] S.I. Goldberg and K.Yano, Globally framed f-manifolds, Illinois J. Math., Vol:15 (1971), 456-474.
  • [9] S.I. Goldberg and K.Yano, On normal globally framed manifolds, T^ohoku Math. J., Vol:22 (1970), 362-370.
  • [10] I. Hasegawa, Y. Okuyama and T. Abe, On p-th Sasakian manifolds, J. Hokkaido Univ. of Education (Section II A), Vol:37 (1986), 1-16.
  • [11] H.A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc., Vol 34 (1932), 27-50.
  • [12] M. Kobayashi and S. Tsuchiya, Invariant submanifolds of an f-manifold with complemented frames, Kodai Math. Sem. Rep., Vol:24 (1972), 430-450.
  • [13] K. Yano, On a structure de ned by a tensor eld f of type (1,1) satisfying f3 + f = 0, Tensor, N. S., Vol:14 (1963), 99-109.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Akif Akyol This is me

Luis M. Fernandez,

Alicia Prıeto-martın This is me

Publication Date April 1, 2016
Submission Date July 10, 2014
Published in Issue Year 2016 Volume: 4 Issue: 1

Cite

APA Akyol, M. A., Fernandez, L. M., & Prıeto-martın, A. (2016). THE L-SECTIONAL CURVATURE OF S-MANIFOLDS. Konuralp Journal of Mathematics, 4(1), 246-253.
AMA Akyol MA, Fernandez, LM, Prıeto-martın A. THE L-SECTIONAL CURVATURE OF S-MANIFOLDS. Konuralp J. Math. April 2016;4(1):246-253.
Chicago Akyol, Mehmet Akif, Luis M. Fernandez, and Alicia Prıeto-martın. “THE L-SECTIONAL CURVATURE OF S-MANIFOLDS”. Konuralp Journal of Mathematics 4, no. 1 (April 2016): 246-53.
EndNote Akyol MA, Fernandez, LM, Prıeto-martın A (April 1, 2016) THE L-SECTIONAL CURVATURE OF S-MANIFOLDS. Konuralp Journal of Mathematics 4 1 246–253.
IEEE M. A. Akyol, L. M. Fernandez, and A. Prıeto-martın, “THE L-SECTIONAL CURVATURE OF S-MANIFOLDS”, Konuralp J. Math., vol. 4, no. 1, pp. 246–253, 2016.
ISNAD Akyol, Mehmet Akif et al. “THE L-SECTIONAL CURVATURE OF S-MANIFOLDS”. Konuralp Journal of Mathematics 4/1 (April 2016), 246-253.
JAMA Akyol MA, Fernandez, LM, Prıeto-martın A. THE L-SECTIONAL CURVATURE OF S-MANIFOLDS. Konuralp J. Math. 2016;4:246–253.
MLA Akyol, Mehmet Akif et al. “THE L-SECTIONAL CURVATURE OF S-MANIFOLDS”. Konuralp Journal of Mathematics, vol. 4, no. 1, 2016, pp. 246-53.
Vancouver Akyol MA, Fernandez, LM, Prıeto-martın A. THE L-SECTIONAL CURVATURE OF S-MANIFOLDS. Konuralp J. Math. 2016;4(1):246-53.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.