ON RECTIFYING SLANT HELICES IN EUCLIDEAN 3-SPACE
Year 2016,
Volume: 4 Issue: 2, 17 - 24, 15.10.2016
Bülent Altunkaya
,
Ferdağ K. Aksoyak
,
Levent Kula
,
Cahit Aytekin
Abstract
In this paper, we study the position vector of rectifying slant helices in $E^3$. First, we have found the general equations of the curvature and the torsion of rectifying slant helices. After that, we have constructed a second order linear differential equation and by solving the equation, we have obtained a family of rectifying slant helices which lie on cones.
References
-
[1] Ali T. Ahmad, Position vectors of slant helices in Euclidean space E3, Journal of the Egyptian Mathematical Society Volume 20, Issue 1, Pages 1-6, April 2012.
-
[2] Chen, B. Y., When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110, 147-152, 2003.
-
[3] Chen, B. Y., Dillen, F. Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica 33, No. 2, 77-90, 2005.
-
[4] Izumiya S., Takeuchi N., New special curves and developable surfaces, Turk. J. Math. 28, 153-163, 2004.
-
[5] S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves , J. Geom. 74, 97-109, 2002.
-
[6] Kula, L. and Yayli, Y., On slant helix and its spherical indicatrix, Applied Mathematics and Computation, 169, 600-607, 2005.
-
[7] Kula, L.; Ekmekci, N. Yayl, Y. and Ilarslan, K., Characterizations of slant helices in Euclidean 3-space, Turkish J. Math. 34, no. 2, 261273, 2010.
-
[8] O'Neill B., Elementary Dierential Geometry, Academic Press, 2006.
-
[9] Struik D. J., Lectures on Classical Dierential Geometry, Dover, 1961.
Year 2016,
Volume: 4 Issue: 2, 17 - 24, 15.10.2016
Bülent Altunkaya
,
Ferdağ K. Aksoyak
,
Levent Kula
,
Cahit Aytekin
References
-
[1] Ali T. Ahmad, Position vectors of slant helices in Euclidean space E3, Journal of the Egyptian Mathematical Society Volume 20, Issue 1, Pages 1-6, April 2012.
-
[2] Chen, B. Y., When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110, 147-152, 2003.
-
[3] Chen, B. Y., Dillen, F. Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica 33, No. 2, 77-90, 2005.
-
[4] Izumiya S., Takeuchi N., New special curves and developable surfaces, Turk. J. Math. 28, 153-163, 2004.
-
[5] S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves , J. Geom. 74, 97-109, 2002.
-
[6] Kula, L. and Yayli, Y., On slant helix and its spherical indicatrix, Applied Mathematics and Computation, 169, 600-607, 2005.
-
[7] Kula, L.; Ekmekci, N. Yayl, Y. and Ilarslan, K., Characterizations of slant helices in Euclidean 3-space, Turkish J. Math. 34, no. 2, 261273, 2010.
-
[8] O'Neill B., Elementary Dierential Geometry, Academic Press, 2006.
-
[9] Struik D. J., Lectures on Classical Dierential Geometry, Dover, 1961.