SPHERICAL PRODUCT SURFACES IN THE GALILEAN SPACE
Year 2016,
Volume: 4 Issue: 2, 290 - 298, 01.10.2016
Muhittin Evren Aydın
Alper Osman Ogrenmıs
Abstract
In the present paper, we consider the spherical product surfaces in a Galilean 3-space G3. We derive a classi cation result for such surfaces of constant curvature in G3. Moreover, we analyze some special curves on these surfaces in G3.
References
- [1] M. Akar, S. Yuce, N. Kuruoglu, One-parameter planar motion on the Galilean plane, Int.
Electron. J. Geom. 6(2) (2013), 79-88.
- [2] K. Arslan, B. Kilic, Product submanifolds and their types, Far East J. Math. Sci. 6(1) (1998),
125-134.
- [3] M. E. Aydin, A. Mihai, A. O. Ogrenmis, M. Ergut, Geometry of the solutions of localized
induction equation in the pseudo-Galilean space, Adv. Math. Phys., vol. 2015, Article ID
905978, 7 pages, 2015. doi:10.1155/2015/905978.
- [4] M. E. Aydin, I. Mihai, On certain surfaces in the isotropic 4-space, Math. Commun., in press.
- [5] A. H. Barr, Superquadrics and angle-preserving transformations, IEEE Comput.Graph. Appl.
1(1) (1981), 11-23.
- [6] B. Bulca, K. Arslan, B. (Kilic) Bayram, G. Ozturk, Spherical product surfaces in E4; An. St.
Univ. Ovidius Constanta 20(1) (2012), 41{54.
- [7] B. Bulca, K. Arslan, B. (Kilic) Bayram, G. Ozturk, H. Ugail, On spherical product surfaces
in E3, IEEE Computer Society, 2009, Int. Conference on CYBERWORLDS.
- [8] M. Dede, Tubular surfaces in Galilean space, Math. Commun. 18 (2013), 209{217.
- [9] M. Dede, C. Ekici, A. C. Coken, On the parallel surfaces in Galilean space, Hacettepe J.
Math. Stat. 42(6) (2013), 605{615.
- [10] B. Divjak, Z.M. Sipus, Special curves on ruled surfaces in Galilean and pseudo-Galilean
spaces, Acta Math. Hungar. 98 (2003), 175{187.
- [11] M.P. do Carmo, Dierential Geometry of Curves and Surfaces, Prentice Hall: Englewood
Clis, NJ, 1976.
- [12] Z. Erjavec, B. Divjak, D. Horvat, The general solutions of Frenet's system in the equiform
geometry of the Galilean, pseudo-Galilean, simple isotropic and double isotropic space, Int.
Math. Forum 6(17) (2011), 837 - 856.
- [13] Z. Erjavec, On generalization of helices in the Galilean and the pseudo-Galilean space, J.
Math. Res. 6(3) (2014), 39-50.
- [14] A. Gray, Modern Dierential Geometry of Curves and Surfaces with Mathematica, CRC
Press LLC, 1998.
- [15] I. Kamenarovic, Existence theorems for ruled surfaces in the Galilean space G3; Rad Hazu
Math. 456(10) (1991), 183-196.
- [16] M.K. Karacan, Y. Tuncer, Tubular surfaces of Weingarten types in Galilean and pseudo-
Galilean, Bull. Math. Anal. Appl. 5(2) (2013), 87-100.
- [17] N. H. Kuiper, Minimal Total absolute curvature for immersions, Invent. Math., 10 (1970),
209-238.
- [18] A.O. Ogrenmis, M. Ergut, M. Bektas, On the helices in the Galilean Space G3; Iranian J.
Sci. Tech., 31(A2) (2007), 177-181.
- [19] A. Onishchick, R. Sulanke, Projective and Cayley-Klein Geometries, Springer, 2006.
- [20] H. B. Oztekin, S. Tatlipinar, On some curves in Galilean plane and 3-dimensional Galilean
space, J. Dyn. Syst. Geom. Theor. 10(2) (2012), 189-196.
- [21] B. J. Pavkovic, I. Kamenarovic, The equiform dierential geometry of curves in the Galilean
space G3, Glasnik Mat. 22(42) (1987), 449-457.
- [22] Z.M. Sipus, Ruled Weingarten surfaces in the Galilean space, Period. Math. Hungar. 56
(2008), 213{225.
- [23] Z.M. Sipus, B.Divjak, Some special surface in the pseudo-Galilean Space, Acta Math. Hungar.
118 (2008), 209{226.
- [24] Z.M. Sipus, B. Divjak, Translation surface in the Galilean space, Glas. Mat. Ser. III 46(2)
(2011), 455{469.
- [25] Z.M. Sipus, B. Divjak, Surfaces of constant curvature in the pseudo-Galilean space, Int. J.
Math. Sci., 2012, Art ID375264, 28pp.
- [26] D.W. Yoon, Surfaces of revolution in the three dimensional pseudo-Galilean space, Glas.
Mat. Ser. III, 48(2) (2013), 415-428.
- [27] D.W. Yoon, Some classication of translation surfaces in Galilean 3-space, Int. J. Math.
Anal. 6(28) (2012), 1355-1361.
- [28] D. W. Yoon, Classication of rotational surfaces in pseudo-Galilean space, Glas. Mat. Ser.
III 50(2) (2015), 453-465.
Year 2016,
Volume: 4 Issue: 2, 290 - 298, 01.10.2016
Muhittin Evren Aydın
Alper Osman Ogrenmıs
References
- [1] M. Akar, S. Yuce, N. Kuruoglu, One-parameter planar motion on the Galilean plane, Int.
Electron. J. Geom. 6(2) (2013), 79-88.
- [2] K. Arslan, B. Kilic, Product submanifolds and their types, Far East J. Math. Sci. 6(1) (1998),
125-134.
- [3] M. E. Aydin, A. Mihai, A. O. Ogrenmis, M. Ergut, Geometry of the solutions of localized
induction equation in the pseudo-Galilean space, Adv. Math. Phys., vol. 2015, Article ID
905978, 7 pages, 2015. doi:10.1155/2015/905978.
- [4] M. E. Aydin, I. Mihai, On certain surfaces in the isotropic 4-space, Math. Commun., in press.
- [5] A. H. Barr, Superquadrics and angle-preserving transformations, IEEE Comput.Graph. Appl.
1(1) (1981), 11-23.
- [6] B. Bulca, K. Arslan, B. (Kilic) Bayram, G. Ozturk, Spherical product surfaces in E4; An. St.
Univ. Ovidius Constanta 20(1) (2012), 41{54.
- [7] B. Bulca, K. Arslan, B. (Kilic) Bayram, G. Ozturk, H. Ugail, On spherical product surfaces
in E3, IEEE Computer Society, 2009, Int. Conference on CYBERWORLDS.
- [8] M. Dede, Tubular surfaces in Galilean space, Math. Commun. 18 (2013), 209{217.
- [9] M. Dede, C. Ekici, A. C. Coken, On the parallel surfaces in Galilean space, Hacettepe J.
Math. Stat. 42(6) (2013), 605{615.
- [10] B. Divjak, Z.M. Sipus, Special curves on ruled surfaces in Galilean and pseudo-Galilean
spaces, Acta Math. Hungar. 98 (2003), 175{187.
- [11] M.P. do Carmo, Dierential Geometry of Curves and Surfaces, Prentice Hall: Englewood
Clis, NJ, 1976.
- [12] Z. Erjavec, B. Divjak, D. Horvat, The general solutions of Frenet's system in the equiform
geometry of the Galilean, pseudo-Galilean, simple isotropic and double isotropic space, Int.
Math. Forum 6(17) (2011), 837 - 856.
- [13] Z. Erjavec, On generalization of helices in the Galilean and the pseudo-Galilean space, J.
Math. Res. 6(3) (2014), 39-50.
- [14] A. Gray, Modern Dierential Geometry of Curves and Surfaces with Mathematica, CRC
Press LLC, 1998.
- [15] I. Kamenarovic, Existence theorems for ruled surfaces in the Galilean space G3; Rad Hazu
Math. 456(10) (1991), 183-196.
- [16] M.K. Karacan, Y. Tuncer, Tubular surfaces of Weingarten types in Galilean and pseudo-
Galilean, Bull. Math. Anal. Appl. 5(2) (2013), 87-100.
- [17] N. H. Kuiper, Minimal Total absolute curvature for immersions, Invent. Math., 10 (1970),
209-238.
- [18] A.O. Ogrenmis, M. Ergut, M. Bektas, On the helices in the Galilean Space G3; Iranian J.
Sci. Tech., 31(A2) (2007), 177-181.
- [19] A. Onishchick, R. Sulanke, Projective and Cayley-Klein Geometries, Springer, 2006.
- [20] H. B. Oztekin, S. Tatlipinar, On some curves in Galilean plane and 3-dimensional Galilean
space, J. Dyn. Syst. Geom. Theor. 10(2) (2012), 189-196.
- [21] B. J. Pavkovic, I. Kamenarovic, The equiform dierential geometry of curves in the Galilean
space G3, Glasnik Mat. 22(42) (1987), 449-457.
- [22] Z.M. Sipus, Ruled Weingarten surfaces in the Galilean space, Period. Math. Hungar. 56
(2008), 213{225.
- [23] Z.M. Sipus, B.Divjak, Some special surface in the pseudo-Galilean Space, Acta Math. Hungar.
118 (2008), 209{226.
- [24] Z.M. Sipus, B. Divjak, Translation surface in the Galilean space, Glas. Mat. Ser. III 46(2)
(2011), 455{469.
- [25] Z.M. Sipus, B. Divjak, Surfaces of constant curvature in the pseudo-Galilean space, Int. J.
Math. Sci., 2012, Art ID375264, 28pp.
- [26] D.W. Yoon, Surfaces of revolution in the three dimensional pseudo-Galilean space, Glas.
Mat. Ser. III, 48(2) (2013), 415-428.
- [27] D.W. Yoon, Some classication of translation surfaces in Galilean 3-space, Int. J. Math.
Anal. 6(28) (2012), 1355-1361.
- [28] D. W. Yoon, Classication of rotational surfaces in pseudo-Galilean space, Glas. Mat. Ser.
III 50(2) (2015), 453-465.