Research Article
BibTex RIS Cite

OPTIMAL WEIGHTED GEOMETRIC MEAN BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR CONVEX COMBINATIONS OF LOGARITHMIC AND IDENTRIC MEANS

Year 2017, Volume: 5 Issue: 1, 77 - 84, 01.04.2017

Abstract

In this paper, optimal weighted geometric mean bounds of centroidal and harmonic means for convex combination of logarithmic and identric means are proved. We find the greatest value $\gamma(\alpha)$ and the least value $\beta(\alpha)$ for each $\alpha\in (0,1)$ such that the double inequality: $C^{\gamma(\alpha)}(a,b)H^{1-\gamma(\alpha)}(a,b)<\alpha L(a,b)+({1-\alpha})I(a,b)<C^{\beta(\alpha)}(a,b)H^{1-\beta(\alpha)}(a,b)$ holds for all $a,b>0$ with $a\neq b.$ Here, $C(a,b),$ $H(a,b)$, $L(a,b),$ and $I(a,b)$ denote centroidal, harmonic, logarithmic and identric means of two positive numbers $a$ and $b,$ respectively.

References

  • [1] Alzer, H. and Qiu, S. L., Inequalities for means in two variables, Arch. Math. (Basel), 80,(2003), no. 2, 201-215.
  • [2] Bullen, P. S., Mitrinovic, D. S. and Vasic, P. M., Means and their inequalities, D. Reidel Publishing Co., Dordrecht, 1958.
  • [3] Carlson, B. C., The logarithmic mean, Amer. Math. Monthly, 79,(1972), 615-618.
  • [4] Chu, Y. M., Hou, S. W. and Xia, W.F., Optimal convex combinations bounds of centroidaland harmonic means for logarithmic and identric means, Buletin of the Iranian Mathematical Society, Vol. 39,(2013), no. 2, 259-269.
  • [5] Kahling, P. and Matkowski, J., Functional equations involving the logarithmic mean, Z. Angew Math. Mech. 76,(1996), no. 7, 385-390.
  • [6] Matejicka, L., Proof of One Optimal Inequalities for Generalized Logarithmic Arithmetic and Geometric Means, J. Inequal. Appl.,(2010), Article ID 902432, 5 pages.
  • [7] Matejicka, L., Optimal convex combinations bounds of centroidal and harmonic means for weighted geometric mean of logarithmic and identric means, Journal of mathematical in equalities,(2014), Volume 8, no. 4, 939-945.
  • [8] Pitinger, A. O., The logarithmic mean in n variables, Amer. Math. Monthly 92,(1985), no. 2, 99-104.
  • [9] Polya, G. and Szeg}o, G., Isoperimetric inequalities in mathematical physics, Princeton University Press, Princeton, 1951.
  • [10] Vavro, J., Kopecky, M. and Vavro, J. jr., Nove prostriedky a metody riesenia sustav telies III- 1.vyd., Zilina, 2007, ISBN 978-80-8075-256-9.
  • [11] Seiffert, W., Problem 887, Nieuw Archief voor Wiskunde, Vol. 11, no.2, 176-176.
  • [12] Shaoqin, G., Hongya, G. and Wenying, S., Optimal convex combination bounds of the centroidal and harmonic means for the sei ert mean, International Journal of Pure and AppliedMathematics, Volume 70,(2011), no. 5, 701-709.
  • [13] Yang, Z.-H., New sharp bounds for logarithmic mean and identric mean, Journal of Inequalities and Applications, (2013), 116, 17 pages.
Year 2017, Volume: 5 Issue: 1, 77 - 84, 01.04.2017

Abstract

References

  • [1] Alzer, H. and Qiu, S. L., Inequalities for means in two variables, Arch. Math. (Basel), 80,(2003), no. 2, 201-215.
  • [2] Bullen, P. S., Mitrinovic, D. S. and Vasic, P. M., Means and their inequalities, D. Reidel Publishing Co., Dordrecht, 1958.
  • [3] Carlson, B. C., The logarithmic mean, Amer. Math. Monthly, 79,(1972), 615-618.
  • [4] Chu, Y. M., Hou, S. W. and Xia, W.F., Optimal convex combinations bounds of centroidaland harmonic means for logarithmic and identric means, Buletin of the Iranian Mathematical Society, Vol. 39,(2013), no. 2, 259-269.
  • [5] Kahling, P. and Matkowski, J., Functional equations involving the logarithmic mean, Z. Angew Math. Mech. 76,(1996), no. 7, 385-390.
  • [6] Matejicka, L., Proof of One Optimal Inequalities for Generalized Logarithmic Arithmetic and Geometric Means, J. Inequal. Appl.,(2010), Article ID 902432, 5 pages.
  • [7] Matejicka, L., Optimal convex combinations bounds of centroidal and harmonic means for weighted geometric mean of logarithmic and identric means, Journal of mathematical in equalities,(2014), Volume 8, no. 4, 939-945.
  • [8] Pitinger, A. O., The logarithmic mean in n variables, Amer. Math. Monthly 92,(1985), no. 2, 99-104.
  • [9] Polya, G. and Szeg}o, G., Isoperimetric inequalities in mathematical physics, Princeton University Press, Princeton, 1951.
  • [10] Vavro, J., Kopecky, M. and Vavro, J. jr., Nove prostriedky a metody riesenia sustav telies III- 1.vyd., Zilina, 2007, ISBN 978-80-8075-256-9.
  • [11] Seiffert, W., Problem 887, Nieuw Archief voor Wiskunde, Vol. 11, no.2, 176-176.
  • [12] Shaoqin, G., Hongya, G. and Wenying, S., Optimal convex combination bounds of the centroidal and harmonic means for the sei ert mean, International Journal of Pure and AppliedMathematics, Volume 70,(2011), no. 5, 701-709.
  • [13] Yang, Z.-H., New sharp bounds for logarithmic mean and identric mean, Journal of Inequalities and Applications, (2013), 116, 17 pages.
There are 13 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Ladislav Matejıcka This is me

Publication Date April 1, 2017
Submission Date February 15, 2015
Acceptance Date June 2, 2016
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Matejıcka, L. (2017). OPTIMAL WEIGHTED GEOMETRIC MEAN BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR CONVEX COMBINATIONS OF LOGARITHMIC AND IDENTRIC MEANS. Konuralp Journal of Mathematics, 5(1), 77-84.
AMA Matejıcka L. OPTIMAL WEIGHTED GEOMETRIC MEAN BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR CONVEX COMBINATIONS OF LOGARITHMIC AND IDENTRIC MEANS. Konuralp J. Math. April 2017;5(1):77-84.
Chicago Matejıcka, Ladislav. “OPTIMAL WEIGHTED GEOMETRIC MEAN BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR CONVEX COMBINATIONS OF LOGARITHMIC AND IDENTRIC MEANS”. Konuralp Journal of Mathematics 5, no. 1 (April 2017): 77-84.
EndNote Matejıcka L (April 1, 2017) OPTIMAL WEIGHTED GEOMETRIC MEAN BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR CONVEX COMBINATIONS OF LOGARITHMIC AND IDENTRIC MEANS. Konuralp Journal of Mathematics 5 1 77–84.
IEEE L. Matejıcka, “OPTIMAL WEIGHTED GEOMETRIC MEAN BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR CONVEX COMBINATIONS OF LOGARITHMIC AND IDENTRIC MEANS”, Konuralp J. Math., vol. 5, no. 1, pp. 77–84, 2017.
ISNAD Matejıcka, Ladislav. “OPTIMAL WEIGHTED GEOMETRIC MEAN BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR CONVEX COMBINATIONS OF LOGARITHMIC AND IDENTRIC MEANS”. Konuralp Journal of Mathematics 5/1 (April 2017), 77-84.
JAMA Matejıcka L. OPTIMAL WEIGHTED GEOMETRIC MEAN BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR CONVEX COMBINATIONS OF LOGARITHMIC AND IDENTRIC MEANS. Konuralp J. Math. 2017;5:77–84.
MLA Matejıcka, Ladislav. “OPTIMAL WEIGHTED GEOMETRIC MEAN BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR CONVEX COMBINATIONS OF LOGARITHMIC AND IDENTRIC MEANS”. Konuralp Journal of Mathematics, vol. 5, no. 1, 2017, pp. 77-84.
Vancouver Matejıcka L. OPTIMAL WEIGHTED GEOMETRIC MEAN BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR CONVEX COMBINATIONS OF LOGARITHMIC AND IDENTRIC MEANS. Konuralp J. Math. 2017;5(1):77-84.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.