Research Article
BibTex RIS Cite

INEQUALITIES INVOLVING DERIVATIVES OF THE $(p; k)$-GAMMA FUNCTION

Year 2017, Volume: 5 Issue: 1, 232 - 239, 03.04.2017

Abstract

In this paper, some inequalities involving the m-th derivative of the $(p; k)$-Gamma function are established. Among other analytical tech- niques, the procedure makes use of the classical Holder's, Minkowski's and Chebyshev's integral inequalities.

References

  • [1] R. P. Agarwal, N. Elezovic and J. Pecaric, On Some Inequalities for Beta and Gamma Functions Via Some Classical Inequalities, Journal of Inequalities and Applications 2005:5 (2005), 593-613.
  • [2] H. Alzer and G. Felder, A Turan-type inequality for the gamma function, Journal of Mathematical Analysis and Applications, 350(2009), 276-282.
  • [3] S. S. Dragomir, R. P. Agarwal and N. S. Barnett, Inequalities for Beta and Gamma Functions via Some Classical and New Integral Inequalities, Journal of Inequalities and Applications, 5 (2000), 103-165.
  • [4] C. Mortici, Turan type inequalities for the Gamma and Polygamma functions, Acta Univer sitatis Apulensis, 23 (2010), 117-121.
  • [5] K. Nantomah, E. Prempeh and S. B. Twum, On a (p; k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis, 2(2)(2016), 79-90.
  • [6] E. Neuman, Inequalities involving a logarithmically convex function and their applications to special functions, J. Inequal. Pure Appl. Math., 7(1)(2006) Art. 16.
  • [7] S. Taf, B. Nefzi and L. Riahi, New Generalizations of Some Inequalities for k-Special and q; k-Special Functions, Le Matematiche, LXX (2015), Fasc. I, 103-113.
Year 2017, Volume: 5 Issue: 1, 232 - 239, 03.04.2017

Abstract

References

  • [1] R. P. Agarwal, N. Elezovic and J. Pecaric, On Some Inequalities for Beta and Gamma Functions Via Some Classical Inequalities, Journal of Inequalities and Applications 2005:5 (2005), 593-613.
  • [2] H. Alzer and G. Felder, A Turan-type inequality for the gamma function, Journal of Mathematical Analysis and Applications, 350(2009), 276-282.
  • [3] S. S. Dragomir, R. P. Agarwal and N. S. Barnett, Inequalities for Beta and Gamma Functions via Some Classical and New Integral Inequalities, Journal of Inequalities and Applications, 5 (2000), 103-165.
  • [4] C. Mortici, Turan type inequalities for the Gamma and Polygamma functions, Acta Univer sitatis Apulensis, 23 (2010), 117-121.
  • [5] K. Nantomah, E. Prempeh and S. B. Twum, On a (p; k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis, 2(2)(2016), 79-90.
  • [6] E. Neuman, Inequalities involving a logarithmically convex function and their applications to special functions, J. Inequal. Pure Appl. Math., 7(1)(2006) Art. 16.
  • [7] S. Taf, B. Nefzi and L. Riahi, New Generalizations of Some Inequalities for k-Special and q; k-Special Functions, Le Matematiche, LXX (2015), Fasc. I, 103-113.
There are 7 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

K. Nantomah This is me

E. Prempeh This is me

S. B. Twum This is me

Publication Date April 3, 2017
Submission Date April 3, 2017
Acceptance Date March 24, 2017
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Nantomah, K., Prempeh, E., & Twum, S. B. (2017). INEQUALITIES INVOLVING DERIVATIVES OF THE $(p; k)$-GAMMA FUNCTION. Konuralp Journal of Mathematics, 5(1), 232-239.
AMA Nantomah K, Prempeh E, Twum SB. INEQUALITIES INVOLVING DERIVATIVES OF THE $(p; k)$-GAMMA FUNCTION. Konuralp J. Math. April 2017;5(1):232-239.
Chicago Nantomah, K., E. Prempeh, and S. B. Twum. “INEQUALITIES INVOLVING DERIVATIVES OF THE $(p; K)$-GAMMA FUNCTION”. Konuralp Journal of Mathematics 5, no. 1 (April 2017): 232-39.
EndNote Nantomah K, Prempeh E, Twum SB (April 1, 2017) INEQUALITIES INVOLVING DERIVATIVES OF THE $(p; k)$-GAMMA FUNCTION. Konuralp Journal of Mathematics 5 1 232–239.
IEEE K. Nantomah, E. Prempeh, and S. B. Twum, “INEQUALITIES INVOLVING DERIVATIVES OF THE $(p; k)$-GAMMA FUNCTION”, Konuralp J. Math., vol. 5, no. 1, pp. 232–239, 2017.
ISNAD Nantomah, K. et al. “INEQUALITIES INVOLVING DERIVATIVES OF THE $(p; K)$-GAMMA FUNCTION”. Konuralp Journal of Mathematics 5/1 (April 2017), 232-239.
JAMA Nantomah K, Prempeh E, Twum SB. INEQUALITIES INVOLVING DERIVATIVES OF THE $(p; k)$-GAMMA FUNCTION. Konuralp J. Math. 2017;5:232–239.
MLA Nantomah, K. et al. “INEQUALITIES INVOLVING DERIVATIVES OF THE $(p; K)$-GAMMA FUNCTION”. Konuralp Journal of Mathematics, vol. 5, no. 1, 2017, pp. 232-9.
Vancouver Nantomah K, Prempeh E, Twum SB. INEQUALITIES INVOLVING DERIVATIVES OF THE $(p; k)$-GAMMA FUNCTION. Konuralp J. Math. 2017;5(1):232-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.