In this study, we extend some common fixed points theorems for mappings in metrically convex metric spaces into partial metric spaces. We generalize earlier results by Imdad \textit{et al.} We also provide an illustrative example.
[1] N. Assad and W. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacic J. Math. 43 (1972), 553-562.
[2] Lj. Gajic and V. Rakocevic, Pair of non-self mappings and common xed points, Appl. Math. Comp. 187 (2007), 999-1006.
[3] O. Hadzic, On coincidence points in convex metric spaces, Univ. U. Novom. Sadu, Zb. Rad,
Prirod. Mat. Fak. Ser. Mat. 19(2) (1986), 233-240.
[4] M. Imdad, L. Khan and D. Sahu, Common xed point theorems for two pairs of non-self mappings, Journal of Applied Mathematics and Computing 21(1) (2006), 269-287.
[5] M. Imdad and S. Kumar, Rhoades-type xed-point theorems for a pair of nonself mappings, Computers & Mathematics with Applications 46(5) (2003), 919-927.
[6] E. Karapinar, S. Sedghi and N. Shobkolaei, Common xed point of maps in complete partial metric spaces, Annals of the Alexandru Ioan Cuza University - Mathematics 0(0), (2014),
65-78.
[7] S. Mathews, Partial metric topology in Papers on General Topology and Applications, Eighth Summer Conference at Queens College. Eds. S. Andima et.al., Annals of the New York Academy of Sciences 728 (1994), 183-197.
[8] S. Oltra and O. Valero, Banach's Fixed Point Theorem for Partial Metric Spaces, Rend. Istit. Mat. Univ. Trieste 36 (2004), 17-26.
Year 2017,
Volume: 5 Issue: 2, 54 - 69, 15.10.2017
[1] N. Assad and W. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacic J. Math. 43 (1972), 553-562.
[2] Lj. Gajic and V. Rakocevic, Pair of non-self mappings and common xed points, Appl. Math. Comp. 187 (2007), 999-1006.
[3] O. Hadzic, On coincidence points in convex metric spaces, Univ. U. Novom. Sadu, Zb. Rad,
Prirod. Mat. Fak. Ser. Mat. 19(2) (1986), 233-240.
[4] M. Imdad, L. Khan and D. Sahu, Common xed point theorems for two pairs of non-self mappings, Journal of Applied Mathematics and Computing 21(1) (2006), 269-287.
[5] M. Imdad and S. Kumar, Rhoades-type xed-point theorems for a pair of nonself mappings, Computers & Mathematics with Applications 46(5) (2003), 919-927.
[6] E. Karapinar, S. Sedghi and N. Shobkolaei, Common xed point of maps in complete partial metric spaces, Annals of the Alexandru Ioan Cuza University - Mathematics 0(0), (2014),
65-78.
[7] S. Mathews, Partial metric topology in Papers on General Topology and Applications, Eighth Summer Conference at Queens College. Eds. S. Andima et.al., Annals of the New York Academy of Sciences 728 (1994), 183-197.
[8] S. Oltra and O. Valero, Banach's Fixed Point Theorem for Partial Metric Spaces, Rend. Istit. Mat. Univ. Trieste 36 (2004), 17-26.
Kumar, S., Rugumısa, T., & Imdad, M. (2017). COMMON FIXED POINTS IN METRICALLY CONVEX PARTIAL METRIC SPACES. Konuralp Journal of Mathematics, 5(2), 54-69.
AMA
Kumar S, Rugumısa T, Imdad M. COMMON FIXED POINTS IN METRICALLY CONVEX PARTIAL METRIC SPACES. Konuralp J. Math. October 2017;5(2):54-69.
Chicago
Kumar, Santosh, Terentius Rugumısa, and M. Imdad. “COMMON FIXED POINTS IN METRICALLY CONVEX PARTIAL METRIC SPACES”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 54-69.
EndNote
Kumar S, Rugumısa T, Imdad M (October 1, 2017) COMMON FIXED POINTS IN METRICALLY CONVEX PARTIAL METRIC SPACES. Konuralp Journal of Mathematics 5 2 54–69.
IEEE
S. Kumar, T. Rugumısa, and M. Imdad, “COMMON FIXED POINTS IN METRICALLY CONVEX PARTIAL METRIC SPACES”, Konuralp J. Math., vol. 5, no. 2, pp. 54–69, 2017.
ISNAD
Kumar, Santosh et al. “COMMON FIXED POINTS IN METRICALLY CONVEX PARTIAL METRIC SPACES”. Konuralp Journal of Mathematics 5/2 (October 2017), 54-69.
JAMA
Kumar S, Rugumısa T, Imdad M. COMMON FIXED POINTS IN METRICALLY CONVEX PARTIAL METRIC SPACES. Konuralp J. Math. 2017;5:54–69.
MLA
Kumar, Santosh et al. “COMMON FIXED POINTS IN METRICALLY CONVEX PARTIAL METRIC SPACES”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 54-69.
Vancouver
Kumar S, Rugumısa T, Imdad M. COMMON FIXED POINTS IN METRICALLY CONVEX PARTIAL METRIC SPACES. Konuralp J. Math. 2017;5(2):54-69.