Research Article
BibTex RIS Cite
Year 2017, Volume: 5 Issue: 2, 228 - 238, 15.10.2017

Abstract

References

  • [1] Antczak, T., Mean value in invexity analysis, Nonlinear Anal., 60(2005), 1473-1484.
  • [2] Budak, H., Usta, F., Sarikaya, M. Z. and Özdemir, M. E., On generalization of midpoint type inequalities with generalized fractional integral operators, https://www.researchgate.net/publication/312596723.
  • [3] Bullen, P. S., Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, (2003).
  • [4] Dragomir, S. S., Pecaric, J. and Persson, L. E., Some inequalities of Hadamard type, Soochow J. Math., 21(1995), 335-341.
  • [5] Du, T. S., Liao, J. G. and Li, Y. J., Properties and integral inequalities of Hadamard-Simpson type for the generalized (s;m)-preinvex functions, J. Nonlinear Sci. Appl., 9(2016), 3112-3126.
  • [6] Hudzik, H. and Maligranda, L., Some remarks on s-convex functions, Aequationes Math., 48(1994), 100-111.
  • [7] Liu, W., New integral inequalities involving beta function via P-convexity, Miskolc Math. Notes, 15(2014), no. 2, 585-591.
  • [8] Liu,W., Wen, W. and Park, J., Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9(2016), 766-777.
  • [9]  Ozdemir, M. E., Set, E. and Alomari, M., Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20(2011), no. 1, 62-73.
  • [10] Pini, R., Invexity and generalized convexity, Optimization, 22(1991), 513-525.
  • [11] Qi, F. and Xi, B. Y., Some integral inequalities of Simpson type for GA-convex functions, Georgian Math. J., 20(2013), no. 4, 775-788.
  • [12] Sarikaya, M. Z. and Budak, H., Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat, 30(2016), no. 5, 1315-1326.
  • [13] Sarikaya, M. Z., Set, E., Yaldiz, H. and Basak, N., Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57(2013), 2403-2407.
  • [14] Stancu, D. D., Coman, G. and Blaga, P., Analiza numericasi teoria aproximarii, Cluj-Napoca: Presa Universitara Clujeana., 2(2002).
  • [15] Tunç, T., Budak, H., Usta, F. and Sarikaya, M. Z., On new generalized fractional integral operators and related fractional inequalities, ResearchGate Article, Available online at: https://www.researchgate.net/publication/313650587.
  • [16] Usta, F., Budak, H., Sarkaya, M. Z. and Set, E., On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators. Filomat, (in press).
  • [17] Yang, X. M., Yang, X. Q. and Teo, K. L., Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117(2003), 607-625.

HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED (s, m, ϕ)-PREINVEX FUNCTIONS

Year 2017, Volume: 5 Issue: 2, 228 - 238, 15.10.2017

Abstract

In the present paper, a new class of generalized $(s,m,\varphi)$-preinvex function is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving generalized $(s,m,\varphi)$-preinvex functions along with beta function are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for generalized $(s,m,\varphi)$-preinvex functions that are twice differentiable via Riemann-Liouville fractional integrals are established. At the end, some applications to special means are given.

References

  • [1] Antczak, T., Mean value in invexity analysis, Nonlinear Anal., 60(2005), 1473-1484.
  • [2] Budak, H., Usta, F., Sarikaya, M. Z. and Özdemir, M. E., On generalization of midpoint type inequalities with generalized fractional integral operators, https://www.researchgate.net/publication/312596723.
  • [3] Bullen, P. S., Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, (2003).
  • [4] Dragomir, S. S., Pecaric, J. and Persson, L. E., Some inequalities of Hadamard type, Soochow J. Math., 21(1995), 335-341.
  • [5] Du, T. S., Liao, J. G. and Li, Y. J., Properties and integral inequalities of Hadamard-Simpson type for the generalized (s;m)-preinvex functions, J. Nonlinear Sci. Appl., 9(2016), 3112-3126.
  • [6] Hudzik, H. and Maligranda, L., Some remarks on s-convex functions, Aequationes Math., 48(1994), 100-111.
  • [7] Liu, W., New integral inequalities involving beta function via P-convexity, Miskolc Math. Notes, 15(2014), no. 2, 585-591.
  • [8] Liu,W., Wen, W. and Park, J., Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9(2016), 766-777.
  • [9]  Ozdemir, M. E., Set, E. and Alomari, M., Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20(2011), no. 1, 62-73.
  • [10] Pini, R., Invexity and generalized convexity, Optimization, 22(1991), 513-525.
  • [11] Qi, F. and Xi, B. Y., Some integral inequalities of Simpson type for GA-convex functions, Georgian Math. J., 20(2013), no. 4, 775-788.
  • [12] Sarikaya, M. Z. and Budak, H., Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat, 30(2016), no. 5, 1315-1326.
  • [13] Sarikaya, M. Z., Set, E., Yaldiz, H. and Basak, N., Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57(2013), 2403-2407.
  • [14] Stancu, D. D., Coman, G. and Blaga, P., Analiza numericasi teoria aproximarii, Cluj-Napoca: Presa Universitara Clujeana., 2(2002).
  • [15] Tunç, T., Budak, H., Usta, F. and Sarikaya, M. Z., On new generalized fractional integral operators and related fractional inequalities, ResearchGate Article, Available online at: https://www.researchgate.net/publication/313650587.
  • [16] Usta, F., Budak, H., Sarkaya, M. Z. and Set, E., On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators. Filomat, (in press).
  • [17] Yang, X. M., Yang, X. Q. and Teo, K. L., Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117(2003), 607-625.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

ARTION Kashurı

ROZANA Lıko

Publication Date October 15, 2017
Submission Date October 15, 2017
Acceptance Date October 12, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Kashurı, A., & Lıko, R. (2017). HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED (s, m, ϕ)-PREINVEX FUNCTIONS. Konuralp Journal of Mathematics, 5(2), 228-238.
AMA Kashurı A, Lıko R. HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED (s, m, ϕ)-PREINVEX FUNCTIONS. Konuralp J. Math. October 2017;5(2):228-238.
Chicago Kashurı, ARTION, and ROZANA Lıko. “HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED (s, M, ϕ)-PREINVEX FUNCTIONS”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 228-38.
EndNote Kashurı A, Lıko R (October 1, 2017) HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED (s, m, ϕ)-PREINVEX FUNCTIONS. Konuralp Journal of Mathematics 5 2 228–238.
IEEE A. Kashurı and R. Lıko, “HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED (s, m, ϕ)-PREINVEX FUNCTIONS”, Konuralp J. Math., vol. 5, no. 2, pp. 228–238, 2017.
ISNAD Kashurı, ARTION - Lıko, ROZANA. “HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED (s, M, ϕ)-PREINVEX FUNCTIONS”. Konuralp Journal of Mathematics 5/2 (October 2017), 228-238.
JAMA Kashurı A, Lıko R. HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED (s, m, ϕ)-PREINVEX FUNCTIONS. Konuralp J. Math. 2017;5:228–238.
MLA Kashurı, ARTION and ROZANA Lıko. “HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED (s, M, ϕ)-PREINVEX FUNCTIONS”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 228-3.
Vancouver Kashurı A, Lıko R. HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE GENERALIZED (s, m, ϕ)-PREINVEX FUNCTIONS. Konuralp J. Math. 2017;5(2):228-3.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.