The purpose of the present paper is to study the existence of pseudo symmetric, pseudo Ricci symmetric and generalized Ricci recurrent $N(k)$-contact metric manifolds.
[1] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509 Springer-Verlag, Berlin, 1976.
[2] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math., Birkhauser, Boston, 2002.
[3] D.E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29, 1977, 319-324.
[4] D.E. Blair, T. Koufogiorgos and B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91, 1995, 189-214.
[5] D.E. Blair, J.S. Kim and M.M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42(5), 2005, 883-992.
[6] E. Cartan, Surune classe remarquable despaces de Riema, Bulletin de la Soc. Math., France, 54, 1926, 214-264.
[8] M.C. Chaki, On pseudosymmetric manifolds, An. Stiint. Univ., Al. I. Cuza Iasi, 33, 1987, 53-58.
[9] M.C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys. 15, 1988, 526-531.
[10] A. De, C-Bochner Curvature Tensor on N(k)-Contact Metric Manifolds, Lobachevskii Journal of Mathematics, 31(3), 2010, 209-214.
[11] U.C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor (NS), 56, 1995, 312-317.
[12] U.C. De and S. Bandyopadhyay, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen, 54, 1999, 377-381.
[13] U.C. De and P. Majhi, On a Type of Contact Metric Manifolds, Lobachevskii Journal of Mathematics, 34(1), 2013, 89-98.
[14] R. Deszcz, On pseudosymmetric spaces, Acta Math., Hungarica, 53, 1992, 185-190.
[15] J.A. Oubina, New classes of contact metric structures, Publ. Math. Debrecen., 32, 1985, 187-193.
[16] E.M. Patterson, Some theorems on Ricci-recurrent spaces, J Lond Math Soc., 27, 1952, 287-295.
[17] Rajendra Prasad, Vibha Srivastava and Shyam Kishor, On generalized Ricci-recurrent N(k)-contact metric manifods, Journal of National Academy of Mathematics, India.
[18] S. Sasaki, Lecture Note on almost Contact Manifolds, Part I, Tohoku Univ., Tohoku 1965.
[19] S. Sasaki, Lecture Note on almost Contact Manifolds, Part II, Tohoku Univ., Tohoku 1967.
[20] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to dirichlet series, Indian Math. Soc., 20, 1956, 47-87.
[21] Z.I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y) . R = 0. I, The local version, J. Differential Geom., 17(4), 1982, 531-582.
[22] L. Tamassy and T.Q. Binh, On weakly symmetric and weakly projective symmetric Rimannian manifolds, Coll. Math. Soc., J. Bolyai, 50, 1989, 663-670.
[23] L. Tamassy and T.Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor, N. S., 53, 1993, 140-148.
[24] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21, 1969, 21-38.
[25] S. Tanno, Ricci curvature of contact Riemannian manifolds, Tohoku Math. J., 40, 1988, 441-448.
[26] M. Tarafdar, On Pseudo Symmetric and Pseudo Ricci Symmetric Sasakian manifolds, Per. Math. Hung. 22(2), 1991, 125-129.
[27] M. Tarafdar and U.C. De, On pseudo symmetric and pseudo ricci symmetric K-contact manifolds, Per. Math. Hung. 31(1), 1995, 21-25.
[28] M. Tarafdar, On Pseudo Symmetric and Pseudo Ricci Symmetric P-Sasakian manifolds, Analele Stiintifice ale Universitatii Al. I. Cuza din Iasi. Serie Noua. Matematica, 37(2), 1991.
[1] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509 Springer-Verlag, Berlin, 1976.
[2] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math., Birkhauser, Boston, 2002.
[3] D.E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29, 1977, 319-324.
[4] D.E. Blair, T. Koufogiorgos and B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91, 1995, 189-214.
[5] D.E. Blair, J.S. Kim and M.M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42(5), 2005, 883-992.
[6] E. Cartan, Surune classe remarquable despaces de Riema, Bulletin de la Soc. Math., France, 54, 1926, 214-264.
[8] M.C. Chaki, On pseudosymmetric manifolds, An. Stiint. Univ., Al. I. Cuza Iasi, 33, 1987, 53-58.
[9] M.C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys. 15, 1988, 526-531.
[10] A. De, C-Bochner Curvature Tensor on N(k)-Contact Metric Manifolds, Lobachevskii Journal of Mathematics, 31(3), 2010, 209-214.
[11] U.C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor (NS), 56, 1995, 312-317.
[12] U.C. De and S. Bandyopadhyay, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen, 54, 1999, 377-381.
[13] U.C. De and P. Majhi, On a Type of Contact Metric Manifolds, Lobachevskii Journal of Mathematics, 34(1), 2013, 89-98.
[14] R. Deszcz, On pseudosymmetric spaces, Acta Math., Hungarica, 53, 1992, 185-190.
[15] J.A. Oubina, New classes of contact metric structures, Publ. Math. Debrecen., 32, 1985, 187-193.
[16] E.M. Patterson, Some theorems on Ricci-recurrent spaces, J Lond Math Soc., 27, 1952, 287-295.
[17] Rajendra Prasad, Vibha Srivastava and Shyam Kishor, On generalized Ricci-recurrent N(k)-contact metric manifods, Journal of National Academy of Mathematics, India.
[18] S. Sasaki, Lecture Note on almost Contact Manifolds, Part I, Tohoku Univ., Tohoku 1965.
[19] S. Sasaki, Lecture Note on almost Contact Manifolds, Part II, Tohoku Univ., Tohoku 1967.
[20] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to dirichlet series, Indian Math. Soc., 20, 1956, 47-87.
[21] Z.I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y) . R = 0. I, The local version, J. Differential Geom., 17(4), 1982, 531-582.
[22] L. Tamassy and T.Q. Binh, On weakly symmetric and weakly projective symmetric Rimannian manifolds, Coll. Math. Soc., J. Bolyai, 50, 1989, 663-670.
[23] L. Tamassy and T.Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor, N. S., 53, 1993, 140-148.
[24] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21, 1969, 21-38.
[25] S. Tanno, Ricci curvature of contact Riemannian manifolds, Tohoku Math. J., 40, 1988, 441-448.
[26] M. Tarafdar, On Pseudo Symmetric and Pseudo Ricci Symmetric Sasakian manifolds, Per. Math. Hung. 22(2), 1991, 125-129.
[27] M. Tarafdar and U.C. De, On pseudo symmetric and pseudo ricci symmetric K-contact manifolds, Per. Math. Hung. 31(1), 1995, 21-25.
[28] M. Tarafdar, On Pseudo Symmetric and Pseudo Ricci Symmetric P-Sasakian manifolds, Analele Stiintifice ale Universitatii Al. I. Cuza din Iasi. Serie Noua. Matematica, 37(2), 1991.
Vishnuvardhana, S., & Venkatesha, V. (2018). Pseudo Symmetric and Pseudo Ricci Symmetric $N(k)$-Contact Metric Manifolds. Konuralp Journal of Mathematics, 6(1), 134-139.
AMA
Vishnuvardhana S, Venkatesha V. Pseudo Symmetric and Pseudo Ricci Symmetric $N(k)$-Contact Metric Manifolds. Konuralp J. Math. April 2018;6(1):134-139.
Chicago
Vishnuvardhana, S.v., and Venkatesha Venkatesha. “Pseudo Symmetric and Pseudo Ricci Symmetric $N(k)$-Contact Metric Manifolds”. Konuralp Journal of Mathematics 6, no. 1 (April 2018): 134-39.
EndNote
Vishnuvardhana S, Venkatesha V (April 1, 2018) Pseudo Symmetric and Pseudo Ricci Symmetric $N(k)$-Contact Metric Manifolds. Konuralp Journal of Mathematics 6 1 134–139.
IEEE
S. Vishnuvardhana and V. Venkatesha, “Pseudo Symmetric and Pseudo Ricci Symmetric $N(k)$-Contact Metric Manifolds”, Konuralp J. Math., vol. 6, no. 1, pp. 134–139, 2018.