Research Article
BibTex RIS Cite

Horizontal lift in the semi-tensor bundle

Year 2018, Volume: 6 Issue: 2, 338 - 344, 15.10.2018

Abstract

The present paper is devoted to some results concerning with the horizontal lift of tensor fields of type (1,0) from manifold B to its semi-tensor (pull-back) bundle tB of type (p,q).


References

  • [1] Duc T.V., Structure presque-transverse. J. Diff. Geom., 14 (1979), no. 2, 215-219.
  • [2] Fattaev H., The Lifts of Vector Fields to the Semitensor Bundle of the Type (2, 0), Journal of Qafqaz University, 25 (2009), no. 1, 136-140.
  • [3] Husemoller D., Fibre Bundles. Springer, New York, 1994.
  • [4] Ivancevic V. and Ivancevic T., Applied Differential Geometry, A Modern Introduction, World Scientific, Singapore, 2007.
  • [5] Lawson H.B. and M.L. Michelsohn, Spin Geometry. Princeton University Press., Princeton, 1989.
  • [6] Salimov A., Tensor Operators and their Applications. Nova Science Publ., New York, 2013.
  • [7] Salimov A. A. and Kadıoglu E., Lifts of derivations to the semitangent bundle, Turk J. Math. 24 (2000), no. 3, 259-266.
  • [8] Steenrod N., The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
  • [9] Vishnevskii V. V., Integrable affinor structures and their plural interpretations. Geometry, 7.J. Math. Sci. (New York) 108 (2002), no. 2, 151-187.
  • [10] Walschap G., Metric Structures in Differential Geometry, Graduate Texts in Mathematics, Springer-Verlag, New York, 2004.
  • [11] Yıldırım F., On a special class of semi-cotangent bundle, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 41 (2015), no. 1, 25-38.
  • [12] Yıldırım F., A pull-Back bundle of tensor bundles defined by projection of the tangent bundle, Ordu University Journal of Science and Technology, 7 (2017), no. 2, 353-366.
  • [13] Yıldırım F., Complete lift of a tensor field of type (1,2) to semi-cotangent bundle, New Trends in Mathematical Sciences, 5 (2017), no. 4, 261-270.
  • [14] Yıldırım F., Note on the cross-section in the semi-tensor bundle, New Trends in Mathematical Sciences, 5 (2017), no. 2, 212-221.
  • [15] Yildirim F., Asl M.B., Jabrailzade F., Vector and affinor fields on cross-sections in the semi-cotangent bundle, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43 (2017), no. 2, 305-315.
  • [16] Yıldırım F. and Salimov A., Semi-cotangent bundle and problems of lifts. Turk J Math, 38 (2014), no.2, 325-339.
Year 2018, Volume: 6 Issue: 2, 338 - 344, 15.10.2018

Abstract

References

  • [1] Duc T.V., Structure presque-transverse. J. Diff. Geom., 14 (1979), no. 2, 215-219.
  • [2] Fattaev H., The Lifts of Vector Fields to the Semitensor Bundle of the Type (2, 0), Journal of Qafqaz University, 25 (2009), no. 1, 136-140.
  • [3] Husemoller D., Fibre Bundles. Springer, New York, 1994.
  • [4] Ivancevic V. and Ivancevic T., Applied Differential Geometry, A Modern Introduction, World Scientific, Singapore, 2007.
  • [5] Lawson H.B. and M.L. Michelsohn, Spin Geometry. Princeton University Press., Princeton, 1989.
  • [6] Salimov A., Tensor Operators and their Applications. Nova Science Publ., New York, 2013.
  • [7] Salimov A. A. and Kadıoglu E., Lifts of derivations to the semitangent bundle, Turk J. Math. 24 (2000), no. 3, 259-266.
  • [8] Steenrod N., The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
  • [9] Vishnevskii V. V., Integrable affinor structures and their plural interpretations. Geometry, 7.J. Math. Sci. (New York) 108 (2002), no. 2, 151-187.
  • [10] Walschap G., Metric Structures in Differential Geometry, Graduate Texts in Mathematics, Springer-Verlag, New York, 2004.
  • [11] Yıldırım F., On a special class of semi-cotangent bundle, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 41 (2015), no. 1, 25-38.
  • [12] Yıldırım F., A pull-Back bundle of tensor bundles defined by projection of the tangent bundle, Ordu University Journal of Science and Technology, 7 (2017), no. 2, 353-366.
  • [13] Yıldırım F., Complete lift of a tensor field of type (1,2) to semi-cotangent bundle, New Trends in Mathematical Sciences, 5 (2017), no. 4, 261-270.
  • [14] Yıldırım F., Note on the cross-section in the semi-tensor bundle, New Trends in Mathematical Sciences, 5 (2017), no. 2, 212-221.
  • [15] Yildirim F., Asl M.B., Jabrailzade F., Vector and affinor fields on cross-sections in the semi-cotangent bundle, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43 (2017), no. 2, 305-315.
  • [16] Yıldırım F. and Salimov A., Semi-cotangent bundle and problems of lifts. Turk J Math, 38 (2014), no.2, 325-339.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Furkan Yıldırım 0000-0003-0081-7857

Publication Date October 15, 2018
Submission Date February 20, 2018
Acceptance Date October 30, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Yıldırım, F. (2018). Horizontal lift in the semi-tensor bundle. Konuralp Journal of Mathematics, 6(2), 338-344.
AMA Yıldırım F. Horizontal lift in the semi-tensor bundle. Konuralp J. Math. October 2018;6(2):338-344.
Chicago Yıldırım, Furkan. “Horizontal Lift in the Semi-Tensor Bundle”. Konuralp Journal of Mathematics 6, no. 2 (October 2018): 338-44.
EndNote Yıldırım F (October 1, 2018) Horizontal lift in the semi-tensor bundle. Konuralp Journal of Mathematics 6 2 338–344.
IEEE F. Yıldırım, “Horizontal lift in the semi-tensor bundle”, Konuralp J. Math., vol. 6, no. 2, pp. 338–344, 2018.
ISNAD Yıldırım, Furkan. “Horizontal Lift in the Semi-Tensor Bundle”. Konuralp Journal of Mathematics 6/2 (October 2018), 338-344.
JAMA Yıldırım F. Horizontal lift in the semi-tensor bundle. Konuralp J. Math. 2018;6:338–344.
MLA Yıldırım, Furkan. “Horizontal Lift in the Semi-Tensor Bundle”. Konuralp Journal of Mathematics, vol. 6, no. 2, 2018, pp. 338-44.
Vancouver Yıldırım F. Horizontal lift in the semi-tensor bundle. Konuralp J. Math. 2018;6(2):338-44.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.