Research Article
BibTex RIS Cite

$D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds

Year 2019, Volume: 7 Issue: 1, 122 - 127, 15.04.2019

Abstract

In this paper, we study $(k,\mu)$-contact metric manifold under $D_a$-homothetic deformation. It is proved that a $D_3$-homothetic deformed locally symmetric $(1, -4)$-contact metric manifold is a Sasakian manifold and the Ricci soliton is shrinking. Further, $\xi^*$-projectively flat and $h$-projectively semisymmetric $(k, \mu)$-contact metric manifolds under $D_a$-homothetic deformation are studied and obtained interesting results.

References

  • [1] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509. Springer Verlag, New York, 1973.
  • [2] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, BirkhauserBoston. Inc., Boston, 2002.
  • [3] D.E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319-324.
  • [4] E. Boeckx, A full classification of contact metric (k;m)- spaces, Illinois J. Math, 44 (2000), 212-219.
  • [5] J.T. Cho, A conformally flat (k;m)-space, Indian J. Pure Appl. Math. 32 (2001), 501-508.
  • [6] U.C. De, Y.H. Kim and A.A. Shaikh, Contact metric manifolds with x belonging to (k;m)-nullity distribution, Indian J. Math., 47 (2005), 1-10.
  • [7] U.C. De, and A. Sarkara, On the quasi-conformal curvature tensor of a (k;m)-contact metric manifold, Math. Reports 14(64), 2 (2012), 115-129.
  • [8] A. Ghosh, T. Koufogiorgos and R. Sharma, Conformally flat contact metric manifolds, J. Geom., 70 (2001), 66-76.
  • [9] A. Ghosh and R. Sharma, A classification of Ricci solitons as (k;m)-contact metrics, Springer Proceedings in Mathematics and Statistics, Springer Japan, (2014), 349-358.
  • [10] R.S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71 (1988), 237-262.
  • [11] T. Ivey, Ricci solitons on compact 3-manifolds, Differential Geom. Appl. 3 (1993), 301-307.
  • [12] J.B. Jun, A. Yildiz and U.C. De, On f-recurrent (k;m)-contact metric manifolds. Bulletin of the Korean Mathematical Society, 45(4) (2008), 689-700.
  • [13] P. Majhi and G. Ghosh, Concircular vectors field in (k;m)-contact metric manifolds. International Electronic Journal of Geometry, 11(1) (2018), 52-56.
  • [14] B.J. Papantoniou, Contact Riemannian manifolds satisfying R(X;x ) R = 0 and x 2 (k;m)-nullity distribution, Yokohama Math. J., 40 (1993), 149-161.
  • [15] D.G. Prakasha, C.S. Bagewadi and Venkatesha, On pseudo projective curvature tensor of a contact metric manifold, SUT J. Math. 43 (2007), 115-126.
  • [16] R. Sharma, Certain results on K-contact and (k;m)-contact metric manifolds, J. Geom., 89 (2008), 138-147.
  • [17] R. Sharma and T. Koufogiorgos, Locally symmetric and Ricci symmetric contact metric manifolds, Ann. Global Anal. Geom., 9 (1991), 177-182.
  • [18] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Mathematical Journal, Second Series, (40(3) (1988), 441-448.
  • [19] S. Tanno, The topology of contact Riemannian manifolds, Illinois Journal of Mathematics, 12(4) (1968), 700-717.
  • [20] M.M. Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801.4222v1 [math.DG], 2008.
  • [21] M.M. Tripathi and. J.S. Kim, On the concircular curvature tensor of a (k;m)-manifold, Balkan J. Geom. Appl. 9(1) (2004), 114-124.
  • [22] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, World Scientific publishing, Singapore, 3 (1984).
Year 2019, Volume: 7 Issue: 1, 122 - 127, 15.04.2019

Abstract

References

  • [1] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509. Springer Verlag, New York, 1973.
  • [2] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, BirkhauserBoston. Inc., Boston, 2002.
  • [3] D.E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319-324.
  • [4] E. Boeckx, A full classification of contact metric (k;m)- spaces, Illinois J. Math, 44 (2000), 212-219.
  • [5] J.T. Cho, A conformally flat (k;m)-space, Indian J. Pure Appl. Math. 32 (2001), 501-508.
  • [6] U.C. De, Y.H. Kim and A.A. Shaikh, Contact metric manifolds with x belonging to (k;m)-nullity distribution, Indian J. Math., 47 (2005), 1-10.
  • [7] U.C. De, and A. Sarkara, On the quasi-conformal curvature tensor of a (k;m)-contact metric manifold, Math. Reports 14(64), 2 (2012), 115-129.
  • [8] A. Ghosh, T. Koufogiorgos and R. Sharma, Conformally flat contact metric manifolds, J. Geom., 70 (2001), 66-76.
  • [9] A. Ghosh and R. Sharma, A classification of Ricci solitons as (k;m)-contact metrics, Springer Proceedings in Mathematics and Statistics, Springer Japan, (2014), 349-358.
  • [10] R.S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71 (1988), 237-262.
  • [11] T. Ivey, Ricci solitons on compact 3-manifolds, Differential Geom. Appl. 3 (1993), 301-307.
  • [12] J.B. Jun, A. Yildiz and U.C. De, On f-recurrent (k;m)-contact metric manifolds. Bulletin of the Korean Mathematical Society, 45(4) (2008), 689-700.
  • [13] P. Majhi and G. Ghosh, Concircular vectors field in (k;m)-contact metric manifolds. International Electronic Journal of Geometry, 11(1) (2018), 52-56.
  • [14] B.J. Papantoniou, Contact Riemannian manifolds satisfying R(X;x ) R = 0 and x 2 (k;m)-nullity distribution, Yokohama Math. J., 40 (1993), 149-161.
  • [15] D.G. Prakasha, C.S. Bagewadi and Venkatesha, On pseudo projective curvature tensor of a contact metric manifold, SUT J. Math. 43 (2007), 115-126.
  • [16] R. Sharma, Certain results on K-contact and (k;m)-contact metric manifolds, J. Geom., 89 (2008), 138-147.
  • [17] R. Sharma and T. Koufogiorgos, Locally symmetric and Ricci symmetric contact metric manifolds, Ann. Global Anal. Geom., 9 (1991), 177-182.
  • [18] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Mathematical Journal, Second Series, (40(3) (1988), 441-448.
  • [19] S. Tanno, The topology of contact Riemannian manifolds, Illinois Journal of Mathematics, 12(4) (1968), 700-717.
  • [20] M.M. Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801.4222v1 [math.DG], 2008.
  • [21] M.M. Tripathi and. J.S. Kim, On the concircular curvature tensor of a (k;m)-manifold, Balkan J. Geom. Appl. 9(1) (2004), 114-124.
  • [22] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, World Scientific publishing, Singapore, 3 (1984).
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nagaraja H. G.

Kiran Kumar D. L.

Prakasha D. G.

Publication Date April 15, 2019
Submission Date August 7, 2018
Acceptance Date December 6, 2018
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA H. G., N., D. L., K. K., & D. G., P. (2019). $D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds. Konuralp Journal of Mathematics, 7(1), 122-127.
AMA H. G. N, D. L. KK, D. G. P. $D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds. Konuralp J. Math. April 2019;7(1):122-127.
Chicago H. G., Nagaraja, Kiran Kumar D. L., and Prakasha D. G. “$D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds”. Konuralp Journal of Mathematics 7, no. 1 (April 2019): 122-27.
EndNote H. G. N, D. L. KK, D. G. P (April 1, 2019) $D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds. Konuralp Journal of Mathematics 7 1 122–127.
IEEE N. H. G., K. K. D. L., and P. D. G., “$D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds”, Konuralp J. Math., vol. 7, no. 1, pp. 122–127, 2019.
ISNAD H. G., Nagaraja et al. “$D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds”. Konuralp Journal of Mathematics 7/1 (April 2019), 122-127.
JAMA H. G. N, D. L. KK, D. G. P. $D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds. Konuralp J. Math. 2019;7:122–127.
MLA H. G., Nagaraja et al. “$D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds”. Konuralp Journal of Mathematics, vol. 7, no. 1, 2019, pp. 122-7.
Vancouver H. G. N, D. L. KK, D. G. P. $D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds. Konuralp J. Math. 2019;7(1):122-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.