Research Article
BibTex RIS Cite
Year 2019, Volume: 7 Issue: 2, 344 - 351, 15.10.2019

Abstract

References

  • [1] D. Andrijevic, Some properties of the topology of $\alpha$-sets, Mat. Vesnik 36 (1984), 1-10.
  • [2] D. Andrijevic, Semi-pre-open sets, Mat. Vesnik 38 (1986), 24-32.
  • [3] A. A. Abo Khadra, A. A. Nasef, On extension of certain concepts from a topological space to a bitopological space, Proc. Math. Phys. Soc. Egypt 79 (2003), 91-102.
  • [4] E. Ekici, On $a$-open sets, $\mathcal{A}^*$-sets and decompositions of continuity and super-continuity, Ann. Univ. Sci. Budapest. E¨otv¨os Sect. Math. 51 (2008), 39-51.
  • [5] E. Ekici, On $e$-open sets, $\mathcal{DP}^*$-sets and $\mathcal{DPE}^*$-sets and decompositions of continuity, Arab. J. Sci. Eng. 33(2A) (2008), 269-282.
  • [6] E. Ekici, On $e^*$-open sets, $\mathcal{D,S}^*$-sets, Math. Morav. 13(1) (2009), 29-36.
  • [7] A. Ghareeb, T. Noiri, $\Lambda$-Generalized closed sets in bitopological spaces, J. Egyptian Math. Soc. 19 (2011), 142–145.
  • [8] A. Ghareeb, T. Noiri, $\Lambda$-Generalized closed sets with respect to an ideal bitopological space, Afr. Mat. 24 (2013), 97–101.
  • [9] H. Z. Ibrahim, $(p,q)$-$\beta$-$I$-$i$-open sets and $(p,q)$-$\beta$-$I$-$i$-almost continuous functions in ideal bitopological spaces, Univers. J. Appl. Math. 2(1) (2014), 63–71.
  • [10] M. İlkhan, M. Akyigit, E.E. Kara, On new types of sets via g-open sets in bitopological spaces, Commun. Fac. Sci. Univ. Ank. Series A1 67(1) (2018), 225–234.
  • [11] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990), 641-656.
  • [12] J. C. Kelly, Bitopological spaces, J. Proc. London Math. Soc. 13 (1963), 71-89.
  • [13] F. H. Khedr, $C\alpha$-Continuity in bitopological spaces, Arab. J. Sci. Eng. 17(1) (1992), 85-89.
  • [14] F. H. Khedr, S. M. Al-Areefi, Precontinuity and semi-pre-continuity in bitopological spaces, Indian J. Pure Appl. Math. 23(9) (1992), 625-633.
  • [15] T. Noiri, V. Popa, Some properties of weakly open functions in bitopological spaces, Novi Sad J. Math. 36(1) (2006), 47–54.
  • [16] S. N. Maheshwari, R. Prasad, Semi open sets and semi continuous functions in bitopological spaces, Math. Notae. 26 (1977/78), 29-37.
  • [17] J. H. Park, B. Y. Lee, M. J. Son, On $\delta$-semiopen sets in topological space, J. Indian Acad. Math. 19(1) (1997), 59-67.
  • [18] S. Raychaudhuri, M. N. Mukherjee, On $\delta$-almost continuity and $\delta$-preopen sets, Bull. Inst. Math. Acad. Sin. 21 (1993), 357-366.
  • [19] G. Thamizharasi, P. Thangavelu, Remarks on closure and interior operators in bitopological spaces, J. Math. Sci. Comput. Appl. 1(1) (2010), 1–8.
  • [20] N. V. Veli c, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103-118.

Types of Generalized $\delta$-Open Sets in Bitopological Spaces

Year 2019, Volume: 7 Issue: 2, 344 - 351, 15.10.2019

Abstract

In theoretical and applied areas of mathematics, one can work with sets endowed with several structures. A bitopological space is a set equipped with two topologies. In this paper, some types of open sets weaker than delta-open sets are generalized to bitopological spaces and their corresponding interior and closure operators are introduced. The relations between these sets and  counter examples for the reverse relations are given. By using these sets, new types of continuous functions are defined and some of their properties are studied in bitopological spaces.

References

  • [1] D. Andrijevic, Some properties of the topology of $\alpha$-sets, Mat. Vesnik 36 (1984), 1-10.
  • [2] D. Andrijevic, Semi-pre-open sets, Mat. Vesnik 38 (1986), 24-32.
  • [3] A. A. Abo Khadra, A. A. Nasef, On extension of certain concepts from a topological space to a bitopological space, Proc. Math. Phys. Soc. Egypt 79 (2003), 91-102.
  • [4] E. Ekici, On $a$-open sets, $\mathcal{A}^*$-sets and decompositions of continuity and super-continuity, Ann. Univ. Sci. Budapest. E¨otv¨os Sect. Math. 51 (2008), 39-51.
  • [5] E. Ekici, On $e$-open sets, $\mathcal{DP}^*$-sets and $\mathcal{DPE}^*$-sets and decompositions of continuity, Arab. J. Sci. Eng. 33(2A) (2008), 269-282.
  • [6] E. Ekici, On $e^*$-open sets, $\mathcal{D,S}^*$-sets, Math. Morav. 13(1) (2009), 29-36.
  • [7] A. Ghareeb, T. Noiri, $\Lambda$-Generalized closed sets in bitopological spaces, J. Egyptian Math. Soc. 19 (2011), 142–145.
  • [8] A. Ghareeb, T. Noiri, $\Lambda$-Generalized closed sets with respect to an ideal bitopological space, Afr. Mat. 24 (2013), 97–101.
  • [9] H. Z. Ibrahim, $(p,q)$-$\beta$-$I$-$i$-open sets and $(p,q)$-$\beta$-$I$-$i$-almost continuous functions in ideal bitopological spaces, Univers. J. Appl. Math. 2(1) (2014), 63–71.
  • [10] M. İlkhan, M. Akyigit, E.E. Kara, On new types of sets via g-open sets in bitopological spaces, Commun. Fac. Sci. Univ. Ank. Series A1 67(1) (2018), 225–234.
  • [11] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990), 641-656.
  • [12] J. C. Kelly, Bitopological spaces, J. Proc. London Math. Soc. 13 (1963), 71-89.
  • [13] F. H. Khedr, $C\alpha$-Continuity in bitopological spaces, Arab. J. Sci. Eng. 17(1) (1992), 85-89.
  • [14] F. H. Khedr, S. M. Al-Areefi, Precontinuity and semi-pre-continuity in bitopological spaces, Indian J. Pure Appl. Math. 23(9) (1992), 625-633.
  • [15] T. Noiri, V. Popa, Some properties of weakly open functions in bitopological spaces, Novi Sad J. Math. 36(1) (2006), 47–54.
  • [16] S. N. Maheshwari, R. Prasad, Semi open sets and semi continuous functions in bitopological spaces, Math. Notae. 26 (1977/78), 29-37.
  • [17] J. H. Park, B. Y. Lee, M. J. Son, On $\delta$-semiopen sets in topological space, J. Indian Acad. Math. 19(1) (1997), 59-67.
  • [18] S. Raychaudhuri, M. N. Mukherjee, On $\delta$-almost continuity and $\delta$-preopen sets, Bull. Inst. Math. Acad. Sin. 21 (1993), 357-366.
  • [19] G. Thamizharasi, P. Thangavelu, Remarks on closure and interior operators in bitopological spaces, J. Math. Sci. Comput. Appl. 1(1) (2010), 1–8.
  • [20] N. V. Veli c, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103-118.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Merve İlkhan 0000-0002-0831-1474

Publication Date October 15, 2019
Submission Date July 29, 2019
Acceptance Date August 7, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA İlkhan, M. (2019). Types of Generalized $\delta$-Open Sets in Bitopological Spaces. Konuralp Journal of Mathematics, 7(2), 344-351.
AMA İlkhan M. Types of Generalized $\delta$-Open Sets in Bitopological Spaces. Konuralp J. Math. October 2019;7(2):344-351.
Chicago İlkhan, Merve. “Types of Generalized $\delta$-Open Sets in Bitopological Spaces”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 344-51.
EndNote İlkhan M (October 1, 2019) Types of Generalized $\delta$-Open Sets in Bitopological Spaces. Konuralp Journal of Mathematics 7 2 344–351.
IEEE M. İlkhan, “Types of Generalized $\delta$-Open Sets in Bitopological Spaces”, Konuralp J. Math., vol. 7, no. 2, pp. 344–351, 2019.
ISNAD İlkhan, Merve. “Types of Generalized $\delta$-Open Sets in Bitopological Spaces”. Konuralp Journal of Mathematics 7/2 (October 2019), 344-351.
JAMA İlkhan M. Types of Generalized $\delta$-Open Sets in Bitopological Spaces. Konuralp J. Math. 2019;7:344–351.
MLA İlkhan, Merve. “Types of Generalized $\delta$-Open Sets in Bitopological Spaces”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 344-51.
Vancouver İlkhan M. Types of Generalized $\delta$-Open Sets in Bitopological Spaces. Konuralp J. Math. 2019;7(2):344-51.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.