On Hermite-Hadamard Type Inequalities with Respect to the Generalization of Some Types of s-Convexity
Year 2020,
Volume: 8 Issue: 1, 165 - 174, 15.04.2020
Sercan Turhan
,
Mehmet Kunt
,
İmdat İşcan
Abstract
In this paper, the authors give a new concept which is a generalization of the concepts $s$-convexity,$GA-s$-convexity, harmonically $s$-convexity and $(p,s)$-convexity establish some new Hermite-Hadamard type inequalities for this class of functions. Some natural applications to special means of real numbers are also given.
References
-
[1] J. Aczel , The notion of mean values, Norske Vid. Selsk. Forhdl., Trondhjem 19 (1947), 83–86.
-
[2] J. Aczel , A generalization of the notion of convex functions, Norske Vid. Selsk. Forhd., Trondhjem 19 (24) (1947), 87–90.
-
[3] G. Aumann , Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelverten, Bayer. Akad. Wiss.Math.-Natur. Kl. Abh., Math. Ann. 109
(1933), 405–413.
-
[4] M. Avcı,H. Kavurmacıand M. E. Ozdemir , New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications,
Appl. Math. Comput., vol. 217 (2011), pp. 5171–5176.
-
[5] G.D. Anderson, M.K. Vamanamurthy and M. Vuorinen , Generalized convexity and inequalities, Journal of Mathematical Analysis and Applications
335 (2) (2007), 1294–1308.
-
[6] Y.-M. Chu , M. Adil Khan , T. U. Khan , and J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open
Math., 15 (2017) 1414-1430.
-
[7] S.S. Dragomir , R.P. Agarwal , Two Inequalities for Differentiable Mappings and Applications to Special Means of Real Numbers and to Trapezoidal
Formula, Appl. Math. Lett. 11 (5) (1998), 91–95.
-
[8] S. S. Dragomir and S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstr. Math., 32 (4) (1999), 687–696.
-
[9] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100–111.
-
[10] İ. İşcan , A new generalization of some integral inequalities for -convex functions, Mathematical Sciences 2013, 7:22,1–8.
-
[11] İ. İşcan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, International Journal of Pure and
Applied Mathematics, 86 (4) (2013), 727–746.
-
[12] İ. İşcan, Some New Hermite-Hadamard Type Inequalities for Geometrically Convex Functions, Mathematics and Statistics 1(2) (2013), 86–91.
-
[13] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, 43 (6) (2014),
935–942.
-
[14] İ. İşcan, Some new general integral inequalities for h-convex and h-concave functions, Adv. Pure Appl. Math. 5 (1) (2014), 21–29.
-
[15] İ. İşcan, Hermite-Hadamard type inequalities for GAs-convex functions, Le Matematiche, Vol. LXIX (2014) – Fasc. II, pp. 129—146.
-
[16] İ. İşcan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, Studia Universitatis Babes¸-Bolyai Mathematica,
60(2015), no.3, 355–366.
-
[17] İ. İşcan, M. Kunt, Hermite-Hadamard-Fej´er type inequalities for harmonically s-convex functions via fractional integrals, The Australian Journal of
Mathematical Analysis and Applications, Volume 12, Issue 1, Article 10, (2015), 1–16.
-
[18] İ. İşcan, Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences, NTMSCI 4 No. 3 (2016), 140–150.
-
[19] İ. İşcan, Hermite-Hadamard type inequalities for p-convex functions, International Journal of Analysis and Applications, Volume 11, Number 2 (2016),
137–145.
-
[20] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput.
147 (2004), 137-146.
-
[21] A.A. Kilbas ,H.M. Srivastava and J.J. Trujillo , Theory and applications of fractional differential equations, Amsterdam, Elsevier, 2006.
-
[22] U. S. Kirmaci ,M. K. Bakula ,M. E. Ozdemir ,J. Pecaric, Hadamard-type inequalities for s-convex functions, Applied Mathematics and Computation
193 (2007) 26—35.
-
[23] M. Adil Khan ,T. Ali and T. U. Khan, Hermite-Hadamard Type Inequalities with Applications, Fasciculi Mathematici, 59 (2017), 57-74.
-
[24] Khan M. Adil Khan, T. Ali, M. Z. Sarikaya , and Q. Din, New bounds forHermite-Hadamard type inequalities with applications, Electronic Journal of
Mathematical Analysis and Applications, to appear (2018).
-
[25] M. Adil Khan, Y. Khurshid , S. S. Dragomir and R. Ullah , Inequalities of the Hermite-Hadamard type with applications,Punjab Univ. J. Math.,
50(3)(2018) 1-12.
-
[26] J. Matkowski , Convex functions with respect to a mean and a characterization of quasi-arithmetic means, Real Anal. Exchange 29 (2003/2004),
229–246.
-
[27] C. P. Niculescu , Convexity according to the geometric mean, Math. Inequal. Appl., vol. 3, no. 2 (2000), pp. 155–167.
-
[28] C.P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (2003) 571–579.
-
[29] W. Orlicz, A note on modular spaces I, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 9 (1961), 157-162.
Year 2020,
Volume: 8 Issue: 1, 165 - 174, 15.04.2020
Sercan Turhan
,
Mehmet Kunt
,
İmdat İşcan
References
-
[1] J. Aczel , The notion of mean values, Norske Vid. Selsk. Forhdl., Trondhjem 19 (1947), 83–86.
-
[2] J. Aczel , A generalization of the notion of convex functions, Norske Vid. Selsk. Forhd., Trondhjem 19 (24) (1947), 87–90.
-
[3] G. Aumann , Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelverten, Bayer. Akad. Wiss.Math.-Natur. Kl. Abh., Math. Ann. 109
(1933), 405–413.
-
[4] M. Avcı,H. Kavurmacıand M. E. Ozdemir , New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications,
Appl. Math. Comput., vol. 217 (2011), pp. 5171–5176.
-
[5] G.D. Anderson, M.K. Vamanamurthy and M. Vuorinen , Generalized convexity and inequalities, Journal of Mathematical Analysis and Applications
335 (2) (2007), 1294–1308.
-
[6] Y.-M. Chu , M. Adil Khan , T. U. Khan , and J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open
Math., 15 (2017) 1414-1430.
-
[7] S.S. Dragomir , R.P. Agarwal , Two Inequalities for Differentiable Mappings and Applications to Special Means of Real Numbers and to Trapezoidal
Formula, Appl. Math. Lett. 11 (5) (1998), 91–95.
-
[8] S. S. Dragomir and S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstr. Math., 32 (4) (1999), 687–696.
-
[9] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100–111.
-
[10] İ. İşcan , A new generalization of some integral inequalities for -convex functions, Mathematical Sciences 2013, 7:22,1–8.
-
[11] İ. İşcan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, International Journal of Pure and
Applied Mathematics, 86 (4) (2013), 727–746.
-
[12] İ. İşcan, Some New Hermite-Hadamard Type Inequalities for Geometrically Convex Functions, Mathematics and Statistics 1(2) (2013), 86–91.
-
[13] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, 43 (6) (2014),
935–942.
-
[14] İ. İşcan, Some new general integral inequalities for h-convex and h-concave functions, Adv. Pure Appl. Math. 5 (1) (2014), 21–29.
-
[15] İ. İşcan, Hermite-Hadamard type inequalities for GAs-convex functions, Le Matematiche, Vol. LXIX (2014) – Fasc. II, pp. 129—146.
-
[16] İ. İşcan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, Studia Universitatis Babes¸-Bolyai Mathematica,
60(2015), no.3, 355–366.
-
[17] İ. İşcan, M. Kunt, Hermite-Hadamard-Fej´er type inequalities for harmonically s-convex functions via fractional integrals, The Australian Journal of
Mathematical Analysis and Applications, Volume 12, Issue 1, Article 10, (2015), 1–16.
-
[18] İ. İşcan, Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences, NTMSCI 4 No. 3 (2016), 140–150.
-
[19] İ. İşcan, Hermite-Hadamard type inequalities for p-convex functions, International Journal of Analysis and Applications, Volume 11, Number 2 (2016),
137–145.
-
[20] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput.
147 (2004), 137-146.
-
[21] A.A. Kilbas ,H.M. Srivastava and J.J. Trujillo , Theory and applications of fractional differential equations, Amsterdam, Elsevier, 2006.
-
[22] U. S. Kirmaci ,M. K. Bakula ,M. E. Ozdemir ,J. Pecaric, Hadamard-type inequalities for s-convex functions, Applied Mathematics and Computation
193 (2007) 26—35.
-
[23] M. Adil Khan ,T. Ali and T. U. Khan, Hermite-Hadamard Type Inequalities with Applications, Fasciculi Mathematici, 59 (2017), 57-74.
-
[24] Khan M. Adil Khan, T. Ali, M. Z. Sarikaya , and Q. Din, New bounds forHermite-Hadamard type inequalities with applications, Electronic Journal of
Mathematical Analysis and Applications, to appear (2018).
-
[25] M. Adil Khan, Y. Khurshid , S. S. Dragomir and R. Ullah , Inequalities of the Hermite-Hadamard type with applications,Punjab Univ. J. Math.,
50(3)(2018) 1-12.
-
[26] J. Matkowski , Convex functions with respect to a mean and a characterization of quasi-arithmetic means, Real Anal. Exchange 29 (2003/2004),
229–246.
-
[27] C. P. Niculescu , Convexity according to the geometric mean, Math. Inequal. Appl., vol. 3, no. 2 (2000), pp. 155–167.
-
[28] C.P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (2003) 571–579.
-
[29] W. Orlicz, A note on modular spaces I, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 9 (1961), 157-162.