Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 2, 391 - 409, 27.10.2020

Abstract

References

  • [1] Bernal, L., Crecimiento relativo de funciones enteras. Contribuci´on al estudio de lasfunciones enteras conındice exponencial finito, Doctoral Dissertation, University of Seville, Spain, 1984.
  • [2] Bernal, L., Orden relativo de crecimiento de funciones enteras, Collect. Math. Vol:39, (1988), 209-229.
  • [3] Biswas, T., Some study on slowly changing function based relative growth of meromorphic function in the unit disc, Konuralp J. Math. Vol:7, No.1 (2019), 146-167
  • [4] Fenton, P. C. and Rossi, J., ODEs and Wiman–Valiron theory in the unit disc, J. Math. Anal. Appl., Vol:367 (2010), 137-145.
  • [5] Girnyk, M. A., On the inverse problem of the theory of the distribution of values for functions that are analytic in the unit disc, (Russian) Ukrain. Mat. ˇ Z., Vol:29, No.1 (1977), 32-39.
  • [6] Hayman, W. K., Meromorphic Functions,Oxford Mathematical Monographs. Clarendon Press, Oxford (1964).
  • [7] Juneja, O. P. and Kapoor, G. P., Analytic functions-growth aspects. Research Notes in Mathematics 104, Pitman Adv. Publ. Prog., Boston-London- Melbourne (1985).
  • [8] Kapoor, G. P. and Gopal, K., Decomposition theorems for analytic functions having slow rates of growth in a finite disc. J. Math. Anal. Appl. Vol:74 (1980), 446-455.
  • [9] Laine, I., Complex differential equations. Handbook of differential equations: ordinary differential equations, Vol: IV, 269-363, Handb. Differ. Equ., Amsterdam: Elsevier/North-Holland, 2008.
  • [10] Li, Y. Z., On the growth of the solution of two-order differential equations in the unit disc, Pure Appl. Math., Vol: 4 (2002), 295-300.
  • [11] Nicholls, P. J. and Sons, L. R., Minimum modulus and zeros of functions in the unit disc. Proc. Lond.Math. Soc., Vol:31, No.3 (1975), 99-113.
  • [12] Sons, L. R., Unbounded functions in the unit disc, Internat. J. Math. & Math. Sci., Vol:6, No.2 (1983), 201-242.
  • [13] Tsuji, M., Potential Theory in Modern Function Theory. Chelsea, New York, (1975), reprint of the 1959 edition.

A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc

Year 2020, Volume: 8 Issue: 2, 391 - 409, 27.10.2020

Abstract

In this paper we introduce the idea of generalized relative order $(\alpha ,\beta )$ and generalized relative type $(\alpha ,\beta )$\ of a meromorphic function with respect to an analytic function in the unit disc $D$ where $\alpha $ and $\beta $ are continuous non-negative on $(-\infty ,+\infty )$ functions. Hence we study some basic properties relating to the sum and product theorems of generalized relative order $(\alpha ,\beta )$ and generalized relative type $(\alpha ,\beta )$\ of a meromorphic function with respect to an analytic function in the unit disc $D$.

References

  • [1] Bernal, L., Crecimiento relativo de funciones enteras. Contribuci´on al estudio de lasfunciones enteras conındice exponencial finito, Doctoral Dissertation, University of Seville, Spain, 1984.
  • [2] Bernal, L., Orden relativo de crecimiento de funciones enteras, Collect. Math. Vol:39, (1988), 209-229.
  • [3] Biswas, T., Some study on slowly changing function based relative growth of meromorphic function in the unit disc, Konuralp J. Math. Vol:7, No.1 (2019), 146-167
  • [4] Fenton, P. C. and Rossi, J., ODEs and Wiman–Valiron theory in the unit disc, J. Math. Anal. Appl., Vol:367 (2010), 137-145.
  • [5] Girnyk, M. A., On the inverse problem of the theory of the distribution of values for functions that are analytic in the unit disc, (Russian) Ukrain. Mat. ˇ Z., Vol:29, No.1 (1977), 32-39.
  • [6] Hayman, W. K., Meromorphic Functions,Oxford Mathematical Monographs. Clarendon Press, Oxford (1964).
  • [7] Juneja, O. P. and Kapoor, G. P., Analytic functions-growth aspects. Research Notes in Mathematics 104, Pitman Adv. Publ. Prog., Boston-London- Melbourne (1985).
  • [8] Kapoor, G. P. and Gopal, K., Decomposition theorems for analytic functions having slow rates of growth in a finite disc. J. Math. Anal. Appl. Vol:74 (1980), 446-455.
  • [9] Laine, I., Complex differential equations. Handbook of differential equations: ordinary differential equations, Vol: IV, 269-363, Handb. Differ. Equ., Amsterdam: Elsevier/North-Holland, 2008.
  • [10] Li, Y. Z., On the growth of the solution of two-order differential equations in the unit disc, Pure Appl. Math., Vol: 4 (2002), 295-300.
  • [11] Nicholls, P. J. and Sons, L. R., Minimum modulus and zeros of functions in the unit disc. Proc. Lond.Math. Soc., Vol:31, No.3 (1975), 99-113.
  • [12] Sons, L. R., Unbounded functions in the unit disc, Internat. J. Math. & Math. Sci., Vol:6, No.2 (1983), 201-242.
  • [13] Tsuji, M., Potential Theory in Modern Function Theory. Chelsea, New York, (1975), reprint of the 1959 edition.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Tanmay Biswas

Chinmay Bıswas

Publication Date October 27, 2020
Submission Date September 18, 2020
Acceptance Date October 9, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Biswas, T., & Bıswas, C. (2020). A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc. Konuralp Journal of Mathematics, 8(2), 391-409.
AMA Biswas T, Bıswas C. A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc. Konuralp J. Math. October 2020;8(2):391-409.
Chicago Biswas, Tanmay, and Chinmay Bıswas. “A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function With Respect to an Entire Function in the Unit Disc”. Konuralp Journal of Mathematics 8, no. 2 (October 2020): 391-409.
EndNote Biswas T, Bıswas C (October 1, 2020) A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc. Konuralp Journal of Mathematics 8 2 391–409.
IEEE T. Biswas and C. Bıswas, “A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc”, Konuralp J. Math., vol. 8, no. 2, pp. 391–409, 2020.
ISNAD Biswas, Tanmay - Bıswas, Chinmay. “A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function With Respect to an Entire Function in the Unit Disc”. Konuralp Journal of Mathematics 8/2 (October 2020), 391-409.
JAMA Biswas T, Bıswas C. A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc. Konuralp J. Math. 2020;8:391–409.
MLA Biswas, Tanmay and Chinmay Bıswas. “A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function With Respect to an Entire Function in the Unit Disc”. Konuralp Journal of Mathematics, vol. 8, no. 2, 2020, pp. 391-09.
Vancouver Biswas T, Bıswas C. A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc. Konuralp J. Math. 2020;8(2):391-409.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.