[1] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces, Filomat 28 (6) (2014), 1087-1101.
[2] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive appings in partially ordered b-metric spaces, Math. Slovaca 64 (4) (2014), 941-960.
[3] T. Van An, N. Van Dung and V.T. Le Hang, A new approach to fixed point theorems on G-metric spaces, Topology Appl. 160 (12) (2013), 1486-1493.
[4] A.H. Ansari, O. Ege and S. Radenovic, Some fixed point results on complex valued Gb-metric spaces, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM 112 (2) (2018), 463-472.
[5] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37.
[6] N. Van Dung, N.T. Hieu and S. Radojevic, Fixed point theorems for g-monotone maps on partially ordered S-metric spaces, Filomat 28 (9) (2014),
1885-1898.
[7] O. Ege, Complex valued Gb-metric spaces, J. Comput. Anal. Appl. 21 (2) (2016), 363-368.
[8] O. Ege, Some fixed point theorems in complex valued Gb-metric spaces, J. Nonlinear Convex Anal. 18 (11) (2017), 1997-2005.
[9] O. Ege and I. Karaca, Common fixed point results on complex valued Gb-metric spaces, Thai J. Math. 16 (3) (2018), 775-787.
[10] O. Ege, C. Park and A.H. Ansari, A different approach to complex valued Gb-metric spaces, Adv. Differ. Equ. 2020 (2020), 152.
[11] N.T. Hieu, N.T. Thanh Ly and N. Van Dung, A generalization of Ciric quasi-contractions for maps on S-metric spaces, Thai J. Math. 13 (2) (2015),
369-380.
[12] N. Hussain, V. Parvaneh and F. Golkarmanesh, Coupled and tripled coincidence point results under (F; g)-invariant sets in Gb-metric spaces and G-a-admissible mappings, Math. Sci. 9 (2015), 11-26.
[13] N. Mlaiki, A. Mukheimer, Y. Rohen, N. Souayah and T. Abdeljawad, Fixed point theorems for a-Ya -Y-contractive mapping in Sb-metric spaces, J. Math. Anal. 8 (5) (2017), 40-46.
[14] N. Mlaiki, Extended Sb-metric spaces, J. Math. Anal. 9 (1) (2018), 124-135.
[15] S.K. Mohanta, Some fixed point theorems in G-metric spaces, An. S¸tiint¸. Univ. ”Ovidius” Constant¸a Ser. Mat. 20 (1) (2012), 285-305.
[17] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006), 289-297.
[18] N.Y. Ozgur and N. Tas, Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (1) (2017), 39-52.
[19] N.Y. Ozgur and N. Tas, Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci. 11 (1) (2017),
7-16.
[20] N.Y. Ozgur and N. Tas, Some generalizations of fixed point theorems on S-metric spaces, Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer, 2016.
[21] N.Y. Ozgur¨ and N. Tas¸, Common fixed point results on complex-valued S-metric spaces, Sahand Commun. Math. Anal. (17) (2) (2019), 83-105.
[22] N.Y. Ozgur and N. Tas¸, The Picard theorem on S-metric spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (4) (2018), 1245-1258.
[23] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (3) (2012), 258-266.
[24] S. Sedghi and N. Van Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (1) (2014), 113-124.
[25] S. Sedghi, N. Shobkolaei, J.R. Roshan and W. Shatanawi, Coupled fixed point theorems in Gb-metric spaces, Mat. Vesnik 66 (2) (2014), 190-201.
[26] S. Sedghi, A. Gholidahneh, T. Dosenoviˇc,´ J. Esfahani and S. Radenovic,´ Common fixed point of four maps in Sb-metric spaces, J. Linear Topol. Algebra
5 (2) (2016), 93-104.
[27] N. Souayah, A fixed point in partial Sb-metric spaces, An. S¸tiint¸. Univ. ”Ovidius” Constant¸a Ser. Mat. 24 (3) (2016), 351-362.
[28] N. Souayah and N. Mlaiki, A fixed point theorem in Sb-metric space, J. Math. Computer Sci. 16 (2016), 131-139.
[29] M. Ughade, D. Turkoglu, S.K. Singh and R.D. Daheriya, Some fixed point theorems in Ab-metric space, British Journal of Mathematics & Computer Science 19 (6) (2016), 1-24.
[30] J. Vujakovic, G.N.V. Kishore, K.P.R. Rao, S. Radenovic and S. Sadik, Existence and unique coupled solution in Sb-metric spaces by rational contraction with application, Mathematics, 7 (4) (2019), 313.
New Generalized Fixed Point Results on $S_{b}$-Metric Spaces
Year 2021,
Volume: 9 Issue: 1, 24 - 32, 28.04.2021
Recently $S_{b}$-metric spaces have been introduced as the generalizations of metric and $S$-metric spaces. In this paper, we generalize the classical Banach's contraction principle using the theory of a complete $S_{b}$-metric space. Also, we give an application to linear equation systems using the $S_{b}$-metric generated by a metric.
[1] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces, Filomat 28 (6) (2014), 1087-1101.
[2] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive appings in partially ordered b-metric spaces, Math. Slovaca 64 (4) (2014), 941-960.
[3] T. Van An, N. Van Dung and V.T. Le Hang, A new approach to fixed point theorems on G-metric spaces, Topology Appl. 160 (12) (2013), 1486-1493.
[4] A.H. Ansari, O. Ege and S. Radenovic, Some fixed point results on complex valued Gb-metric spaces, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM 112 (2) (2018), 463-472.
[5] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37.
[6] N. Van Dung, N.T. Hieu and S. Radojevic, Fixed point theorems for g-monotone maps on partially ordered S-metric spaces, Filomat 28 (9) (2014),
1885-1898.
[7] O. Ege, Complex valued Gb-metric spaces, J. Comput. Anal. Appl. 21 (2) (2016), 363-368.
[8] O. Ege, Some fixed point theorems in complex valued Gb-metric spaces, J. Nonlinear Convex Anal. 18 (11) (2017), 1997-2005.
[9] O. Ege and I. Karaca, Common fixed point results on complex valued Gb-metric spaces, Thai J. Math. 16 (3) (2018), 775-787.
[10] O. Ege, C. Park and A.H. Ansari, A different approach to complex valued Gb-metric spaces, Adv. Differ. Equ. 2020 (2020), 152.
[11] N.T. Hieu, N.T. Thanh Ly and N. Van Dung, A generalization of Ciric quasi-contractions for maps on S-metric spaces, Thai J. Math. 13 (2) (2015),
369-380.
[12] N. Hussain, V. Parvaneh and F. Golkarmanesh, Coupled and tripled coincidence point results under (F; g)-invariant sets in Gb-metric spaces and G-a-admissible mappings, Math. Sci. 9 (2015), 11-26.
[13] N. Mlaiki, A. Mukheimer, Y. Rohen, N. Souayah and T. Abdeljawad, Fixed point theorems for a-Ya -Y-contractive mapping in Sb-metric spaces, J. Math. Anal. 8 (5) (2017), 40-46.
[14] N. Mlaiki, Extended Sb-metric spaces, J. Math. Anal. 9 (1) (2018), 124-135.
[15] S.K. Mohanta, Some fixed point theorems in G-metric spaces, An. S¸tiint¸. Univ. ”Ovidius” Constant¸a Ser. Mat. 20 (1) (2012), 285-305.
[17] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006), 289-297.
[18] N.Y. Ozgur and N. Tas, Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (1) (2017), 39-52.
[19] N.Y. Ozgur and N. Tas, Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci. 11 (1) (2017),
7-16.
[20] N.Y. Ozgur and N. Tas, Some generalizations of fixed point theorems on S-metric spaces, Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer, 2016.
[21] N.Y. Ozgur¨ and N. Tas¸, Common fixed point results on complex-valued S-metric spaces, Sahand Commun. Math. Anal. (17) (2) (2019), 83-105.
[22] N.Y. Ozgur and N. Tas¸, The Picard theorem on S-metric spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (4) (2018), 1245-1258.
[23] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (3) (2012), 258-266.
[24] S. Sedghi and N. Van Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (1) (2014), 113-124.
[25] S. Sedghi, N. Shobkolaei, J.R. Roshan and W. Shatanawi, Coupled fixed point theorems in Gb-metric spaces, Mat. Vesnik 66 (2) (2014), 190-201.
[26] S. Sedghi, A. Gholidahneh, T. Dosenoviˇc,´ J. Esfahani and S. Radenovic,´ Common fixed point of four maps in Sb-metric spaces, J. Linear Topol. Algebra
5 (2) (2016), 93-104.
[27] N. Souayah, A fixed point in partial Sb-metric spaces, An. S¸tiint¸. Univ. ”Ovidius” Constant¸a Ser. Mat. 24 (3) (2016), 351-362.
[28] N. Souayah and N. Mlaiki, A fixed point theorem in Sb-metric space, J. Math. Computer Sci. 16 (2016), 131-139.
[29] M. Ughade, D. Turkoglu, S.K. Singh and R.D. Daheriya, Some fixed point theorems in Ab-metric space, British Journal of Mathematics & Computer Science 19 (6) (2016), 1-24.
[30] J. Vujakovic, G.N.V. Kishore, K.P.R. Rao, S. Radenovic and S. Sadik, Existence and unique coupled solution in Sb-metric spaces by rational contraction with application, Mathematics, 7 (4) (2019), 313.
Taş, N., & Özgür, N. (2021). New Generalized Fixed Point Results on $S_{b}$-Metric Spaces. Konuralp Journal of Mathematics, 9(1), 24-32.
AMA
Taş N, Özgür N. New Generalized Fixed Point Results on $S_{b}$-Metric Spaces. Konuralp J. Math. April 2021;9(1):24-32.
Chicago
Taş, Nihal, and Nihal Özgür. “New Generalized Fixed Point Results on $S_{b}$-Metric Spaces”. Konuralp Journal of Mathematics 9, no. 1 (April 2021): 24-32.
EndNote
Taş N, Özgür N (April 1, 2021) New Generalized Fixed Point Results on $S_{b}$-Metric Spaces. Konuralp Journal of Mathematics 9 1 24–32.
IEEE
N. Taş and N. Özgür, “New Generalized Fixed Point Results on $S_{b}$-Metric Spaces”, Konuralp J. Math., vol. 9, no. 1, pp. 24–32, 2021.
ISNAD
Taş, Nihal - Özgür, Nihal. “New Generalized Fixed Point Results on $S_{b}$-Metric Spaces”. Konuralp Journal of Mathematics 9/1 (April 2021), 24-32.
JAMA
Taş N, Özgür N. New Generalized Fixed Point Results on $S_{b}$-Metric Spaces. Konuralp J. Math. 2021;9:24–32.
MLA
Taş, Nihal and Nihal Özgür. “New Generalized Fixed Point Results on $S_{b}$-Metric Spaces”. Konuralp Journal of Mathematics, vol. 9, no. 1, 2021, pp. 24-32.
Vancouver
Taş N, Özgür N. New Generalized Fixed Point Results on $S_{b}$-Metric Spaces. Konuralp J. Math. 2021;9(1):24-32.