[1] Baoding, L., Inequalities and Convergence Concepts of Fuzzy and Rough Variables , Fuzzy Optimization and Decision Making, Springer, 2003.
[2] Baoding, L., Theory and Practice of Uncertain Programming, Verlag, Springer, 2002.
[3] Fridy, J. A., On Statistical Convergence, Oldenbourg Wissebschaftsverlag, 1985.
[4] Fast, H, Sur la Convergence Statistique , Colloquium mathematicae, 1951.
[5] Pawlak, Z., International journal of computer & information sciences , Springer, 1982.
[6] Baoding, L., Theory and Practice of Uncertain Programming , Springer, 2009.
[7] Fridy, J. A., On Statistical Convergence, Oldenbourg Wissebschaftsverlag, 1985.
[8] Maddox, I. J., Inclusions Between FK Spaces and Kuttner’s Theorem, Cambridge University Press, 1987.
[9] Schoenberg, I.J., The Integrability of Certain Functions and Related Summability Methods, Taylor & Francis, 1959.
[10] Fridy, J. A., Statistical Limit Points, Proceedings of the American mathematical society, 1993.
[11] Fridy, J. A. and Orhan, C., Lacunary Statistical Convergence, Pacific Journal of Mathematics, 1993.
[12] ˇ Sal´at, T., On Statistically Convergent Sequences of Real Numbers, Mathematical Institute of the Slovak Academy of Sciences, 1980.
[13] Savas¸, E. and Nuray, F., On sigma-statistically Convergence and Lacunary sigma-statistically Convergence, Mathematical Institute of the Slovak Academy of Sciences, 1993.
[14] Slowinski, R. and Vanderpooten, D., A Generalized Definition of Rough Approximations Based on Similarity, IEEE Transactions on Knowledge and Data Engineering, 2000.
[15] Mursaleen, M., Statistical Convergence; Summability of Sequences, Mathematical Institute of the Slovak Academy of Sciences, 2000.
Statistical Convergence of Rough Variable
Year 2021,
Volume: 9 Issue: 2, 268 - 273, 15.10.2021
In this paper, we present the concept of statisticallyconvergent sequences for rough variables. Furthermore, the relation between convergence statistically in trust and converges $\lambda$-statistically in trust is given. Also, some properties of statistically convergent sequences are discussed. In addition, we introduce statistically Cauchy sequence in rough spaces.
[1] Baoding, L., Inequalities and Convergence Concepts of Fuzzy and Rough Variables , Fuzzy Optimization and Decision Making, Springer, 2003.
[2] Baoding, L., Theory and Practice of Uncertain Programming, Verlag, Springer, 2002.
[3] Fridy, J. A., On Statistical Convergence, Oldenbourg Wissebschaftsverlag, 1985.
[4] Fast, H, Sur la Convergence Statistique , Colloquium mathematicae, 1951.
[5] Pawlak, Z., International journal of computer & information sciences , Springer, 1982.
[6] Baoding, L., Theory and Practice of Uncertain Programming , Springer, 2009.
[7] Fridy, J. A., On Statistical Convergence, Oldenbourg Wissebschaftsverlag, 1985.
[8] Maddox, I. J., Inclusions Between FK Spaces and Kuttner’s Theorem, Cambridge University Press, 1987.
[9] Schoenberg, I.J., The Integrability of Certain Functions and Related Summability Methods, Taylor & Francis, 1959.
[10] Fridy, J. A., Statistical Limit Points, Proceedings of the American mathematical society, 1993.
[11] Fridy, J. A. and Orhan, C., Lacunary Statistical Convergence, Pacific Journal of Mathematics, 1993.
[12] ˇ Sal´at, T., On Statistically Convergent Sequences of Real Numbers, Mathematical Institute of the Slovak Academy of Sciences, 1980.
[13] Savas¸, E. and Nuray, F., On sigma-statistically Convergence and Lacunary sigma-statistically Convergence, Mathematical Institute of the Slovak Academy of Sciences, 1993.
[14] Slowinski, R. and Vanderpooten, D., A Generalized Definition of Rough Approximations Based on Similarity, IEEE Transactions on Knowledge and Data Engineering, 2000.
[15] Mursaleen, M., Statistical Convergence; Summability of Sequences, Mathematical Institute of the Slovak Academy of Sciences, 2000.