Research Article
BibTex RIS Cite

Initial Coefficients Estimate and Fekete-Szegö Problems for Two New Subclasses of Bi-Univalent Functions

Year 2022, Volume: 10 Issue: 1, 138 - 148, 15.04.2022

Abstract

In the present investigation, making use of definition of the generalized Bivariate Fibonacci-Like polynomials that include polynomials such as Horadam, Chebyshev polynomials two new subclasses of bi-univalent functions are introduced. Then, some bounds are determined for the initial Taylor-Maclaurin coefficients of the functions belonging to these new subclasses. Further, the well-known Fekete-Szegö problem is discussed for the defined subclasses. Lastly, several remarks are indicated for the some special values of variables.

References

  • [1] A. G. Alamoush, Coefficient estimates for certain subclass of bi-bazilevic functions associated with chebyshev polynomials, Acta Universitatis Apulensis, 60, (2019) 53–59.
  • [2] A. G. Alamoush, On a subclass of bi-univalent functions associated to Horadam polynomials, International Journal of Open Problems in Complex Analysis, 12, (2020) 58–65.
  • [3] I. Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics, 8, (2020) 783.
  • [4] S¸ . Altınkaya and S. Yalc¸ın, Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions, arXiv:1605.08224, (2016).
  • [5] S¸ . Altınkaya and S. Yalc¸ın, On the Chebyshev polynomial coefficient problem of bi-Bazileviˇc function, TWMS Journal of Applied and Engineering Mathematics, 10, (2020) 251–258. [6] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy and T. Al-Hawary, Bi-Bazilevi˘c functions of order \nu+idelta associated with (p;q)-Lucas polynomials, AIMS Mathematics, 6(5), (2021) 4296-4305.
  • [7] D. Brannan and J. Clunie, Aspects of contemporary complex analysis, Academic Press, (1980).
  • [8] D. Brannan and T. S. Taha, On some classes of bi-univalent functions, Mathematical Analysis and Its Applications, Pergamon (1988), 53–60.
  • [9] S. Bulut, N. Magesh and V.K. Balaji, Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials, Journal of Classical Analysis, 11(1), (2017) 83–89.
  • [10] P. L. Duren, Univalent Functions In: Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, (1983).
  • [11] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters, 24 (2011) 1569–1573.
  • [12] H. O¨ . Gu¨ney, G. Murugusundaramoorty and J. Sokoł, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Universitatis Sapientiae Mathematica, 10(1), (2018) 70–84.
  • [13] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Incorparation, (2001).
  • [14] M. Lewin, On a coefficient problem for bi-univalent functions, Proceedings of the American Mathematical Society, 18, (1967), 63–68.
  • [15] S. S. Miller and P. T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, (2000).
  • [16] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in jzj < 1, Archive for Rational Mechanics and Analysis, 32, (1969), 100–112.
  • [17] Y. K. Panwar and M. Singh, Generalized bivariate Fibonacci-like polynomials, International Journal of Pure Mathematics, 1, (2014), 8–13.
  • [18] R. Singh, On Bazilevic functions, Proceedings of the American Mathematical Society, 38(2), (1973), 261–271.
  • [19] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23, (2010), 1188–1192.
  • [20] H. M. Srivastava, S. Bulut, M. C¸ a˘glar and N. Ya˘gmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27, (2013), 831–842.
  • [21] H. M. Srivastava, S¸ . Altınkaya and S. Yalc¸ın, Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials, Iranian Journal of Science and Technology, Transaction A: Science, ,43, (2019), 1873–1879.
  • [22] H. M. Srivastava, G. Murugusundaramoorthy and K. Vijaya, Coefficient estimates for some families of bi-Bazileviˇc functions of the Ma-Minda type involving the Hohlov operator, Journal of Classical Analysis, 2, (2013), 167–181.
  • [23] S. R. Swamy and Y. Sailaja, Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions, International Journal of Mathematics Trends and Technology, 66(8), (2020), 131–138.
  • [24] D. L. Tan, Coefficient Estimates for Bi-univalent Functions, Chinese Annals of Mathematics Series A, 5, (1984) 559–568.
  • [25] A. K. Wanas and A. L. Alina, Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions, Journal of physics: conference series, 1294(3), IOP Publishing, (2019).
Year 2022, Volume: 10 Issue: 1, 138 - 148, 15.04.2022

Abstract

References

  • [1] A. G. Alamoush, Coefficient estimates for certain subclass of bi-bazilevic functions associated with chebyshev polynomials, Acta Universitatis Apulensis, 60, (2019) 53–59.
  • [2] A. G. Alamoush, On a subclass of bi-univalent functions associated to Horadam polynomials, International Journal of Open Problems in Complex Analysis, 12, (2020) 58–65.
  • [3] I. Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics, 8, (2020) 783.
  • [4] S¸ . Altınkaya and S. Yalc¸ın, Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions, arXiv:1605.08224, (2016).
  • [5] S¸ . Altınkaya and S. Yalc¸ın, On the Chebyshev polynomial coefficient problem of bi-Bazileviˇc function, TWMS Journal of Applied and Engineering Mathematics, 10, (2020) 251–258. [6] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy and T. Al-Hawary, Bi-Bazilevi˘c functions of order \nu+idelta associated with (p;q)-Lucas polynomials, AIMS Mathematics, 6(5), (2021) 4296-4305.
  • [7] D. Brannan and J. Clunie, Aspects of contemporary complex analysis, Academic Press, (1980).
  • [8] D. Brannan and T. S. Taha, On some classes of bi-univalent functions, Mathematical Analysis and Its Applications, Pergamon (1988), 53–60.
  • [9] S. Bulut, N. Magesh and V.K. Balaji, Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials, Journal of Classical Analysis, 11(1), (2017) 83–89.
  • [10] P. L. Duren, Univalent Functions In: Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, (1983).
  • [11] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters, 24 (2011) 1569–1573.
  • [12] H. O¨ . Gu¨ney, G. Murugusundaramoorty and J. Sokoł, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Universitatis Sapientiae Mathematica, 10(1), (2018) 70–84.
  • [13] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Incorparation, (2001).
  • [14] M. Lewin, On a coefficient problem for bi-univalent functions, Proceedings of the American Mathematical Society, 18, (1967), 63–68.
  • [15] S. S. Miller and P. T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, (2000).
  • [16] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in jzj < 1, Archive for Rational Mechanics and Analysis, 32, (1969), 100–112.
  • [17] Y. K. Panwar and M. Singh, Generalized bivariate Fibonacci-like polynomials, International Journal of Pure Mathematics, 1, (2014), 8–13.
  • [18] R. Singh, On Bazilevic functions, Proceedings of the American Mathematical Society, 38(2), (1973), 261–271.
  • [19] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23, (2010), 1188–1192.
  • [20] H. M. Srivastava, S. Bulut, M. C¸ a˘glar and N. Ya˘gmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27, (2013), 831–842.
  • [21] H. M. Srivastava, S¸ . Altınkaya and S. Yalc¸ın, Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials, Iranian Journal of Science and Technology, Transaction A: Science, ,43, (2019), 1873–1879.
  • [22] H. M. Srivastava, G. Murugusundaramoorthy and K. Vijaya, Coefficient estimates for some families of bi-Bazileviˇc functions of the Ma-Minda type involving the Hohlov operator, Journal of Classical Analysis, 2, (2013), 167–181.
  • [23] S. R. Swamy and Y. Sailaja, Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions, International Journal of Mathematics Trends and Technology, 66(8), (2020), 131–138.
  • [24] D. L. Tan, Coefficient Estimates for Bi-univalent Functions, Chinese Annals of Mathematics Series A, 5, (1984) 559–568.
  • [25] A. K. Wanas and A. L. Alina, Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions, Journal of physics: conference series, 1294(3), IOP Publishing, (2019).
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

İbrahim Aktaş 0000-0003-4570-4485

Nazmiye Yılmaz

Publication Date April 15, 2022
Submission Date January 17, 2022
Acceptance Date March 17, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Aktaş, İ., & Yılmaz, N. (2022). Initial Coefficients Estimate and Fekete-Szegö Problems for Two New Subclasses of Bi-Univalent Functions. Konuralp Journal of Mathematics, 10(1), 138-148.
AMA Aktaş İ, Yılmaz N. Initial Coefficients Estimate and Fekete-Szegö Problems for Two New Subclasses of Bi-Univalent Functions. Konuralp J. Math. April 2022;10(1):138-148.
Chicago Aktaş, İbrahim, and Nazmiye Yılmaz. “Initial Coefficients Estimate and Fekete-Szegö Problems for Two New Subclasses of Bi-Univalent Functions”. Konuralp Journal of Mathematics 10, no. 1 (April 2022): 138-48.
EndNote Aktaş İ, Yılmaz N (April 1, 2022) Initial Coefficients Estimate and Fekete-Szegö Problems for Two New Subclasses of Bi-Univalent Functions. Konuralp Journal of Mathematics 10 1 138–148.
IEEE İ. Aktaş and N. Yılmaz, “Initial Coefficients Estimate and Fekete-Szegö Problems for Two New Subclasses of Bi-Univalent Functions”, Konuralp J. Math., vol. 10, no. 1, pp. 138–148, 2022.
ISNAD Aktaş, İbrahim - Yılmaz, Nazmiye. “Initial Coefficients Estimate and Fekete-Szegö Problems for Two New Subclasses of Bi-Univalent Functions”. Konuralp Journal of Mathematics 10/1 (April 2022), 138-148.
JAMA Aktaş İ, Yılmaz N. Initial Coefficients Estimate and Fekete-Szegö Problems for Two New Subclasses of Bi-Univalent Functions. Konuralp J. Math. 2022;10:138–148.
MLA Aktaş, İbrahim and Nazmiye Yılmaz. “Initial Coefficients Estimate and Fekete-Szegö Problems for Two New Subclasses of Bi-Univalent Functions”. Konuralp Journal of Mathematics, vol. 10, no. 1, 2022, pp. 138-4.
Vancouver Aktaş İ, Yılmaz N. Initial Coefficients Estimate and Fekete-Szegö Problems for Two New Subclasses of Bi-Univalent Functions. Konuralp J. Math. 2022;10(1):138-4.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.