Research Article
BibTex RIS Cite
Year 2022, Volume: 10 Issue: 1, 112 - 117, 15.04.2022

Abstract

Supporting Institution

yok

Project Number

yok

Thanks

Dergi ve Hakemlere şimdiden teşekkür ederiz.

References

  • [1] B. Y. Chen and S. Ishikawa, Biharmonic Surface in Pseudo-Euclidean Spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, Vol:45, No.2 (1991) , p. 323–347.
  • [2] O. Cakır and S. Senyurt, Harmonicity and Differential Equation of Involute of a Curve in E^3, Thermal Science, Vol: 23, No.6 (2019), p. 2119–2125.
  • [3] K. Arslan, H. Kocayigit and M. Onder, Characterizations of Space Curves with 1-type Darboux Instantaneou Rotation Vector, Commun. Korean Math. ¨Soc., Vol: 31, No.2 (2016), p. 379–388.
  • [4] S. Senyurt and O. C¸ akır, Characterizations of Curves According to Frenet Frame in Euclidean Space, Turk. J. Math. Comput. Sci., Vol: 11, No.1 (2019),p. 48–52.
  • [5] S. Senyurt and O. Cakır, Diferential Equations for a Space Curve According to the Unit Darboux Vector, Turk. J. Math. Comput. Sci., Vol: 9, No.1 (2018), p. 91–97.
  • [6] Sabuncuoglu A., Diferensiyel Geometri, Nobel Akademik Yayincilik, Ankara, 2014.
  • [7] S. Senyurt, A. Calıskan and U. Celik, N∗C∗–Smarandache Curve of Bertrand Curves Pair According to Frenet Frame, International J.Math. Combin.,Vol:1, (2016), p. 1–7.
  • [8] O. Cakır and S. Senyurt, On Harmonicity and Differential Equations of a Bertrand Curve in E^3, arXiv: 2103.0301

Characterizations of a Bertrand Curve According to Darboux Vector

Year 2022, Volume: 10 Issue: 1, 112 - 117, 15.04.2022

Abstract

In this paper, we first take a Bertrand curve pair and then we use Darboux vector instead of mean curvature vector to give characterizations of Bertrand partner curve by means of the Bertrand curve. By making use of the relations between the Frenet frames of the Bertrand curve pair we give the differential equations and sufficient conditions of harmonicity(biharmonic or 1-type harmonic) of the Bertrand partner curve in terms of the Darboux vector of the Bertrand curve. After driving the conclusions we write an example to demonstrate how our assumptions come true

Project Number

yok

References

  • [1] B. Y. Chen and S. Ishikawa, Biharmonic Surface in Pseudo-Euclidean Spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, Vol:45, No.2 (1991) , p. 323–347.
  • [2] O. Cakır and S. Senyurt, Harmonicity and Differential Equation of Involute of a Curve in E^3, Thermal Science, Vol: 23, No.6 (2019), p. 2119–2125.
  • [3] K. Arslan, H. Kocayigit and M. Onder, Characterizations of Space Curves with 1-type Darboux Instantaneou Rotation Vector, Commun. Korean Math. ¨Soc., Vol: 31, No.2 (2016), p. 379–388.
  • [4] S. Senyurt and O. C¸ akır, Characterizations of Curves According to Frenet Frame in Euclidean Space, Turk. J. Math. Comput. Sci., Vol: 11, No.1 (2019),p. 48–52.
  • [5] S. Senyurt and O. Cakır, Diferential Equations for a Space Curve According to the Unit Darboux Vector, Turk. J. Math. Comput. Sci., Vol: 9, No.1 (2018), p. 91–97.
  • [6] Sabuncuoglu A., Diferensiyel Geometri, Nobel Akademik Yayincilik, Ankara, 2014.
  • [7] S. Senyurt, A. Calıskan and U. Celik, N∗C∗–Smarandache Curve of Bertrand Curves Pair According to Frenet Frame, International J.Math. Combin.,Vol:1, (2016), p. 1–7.
  • [8] O. Cakır and S. Senyurt, On Harmonicity and Differential Equations of a Bertrand Curve in E^3, arXiv: 2103.0301
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Süleyman Şenyurt

Osman Çakır 0000-0002-2664-5232

Project Number yok
Publication Date April 15, 2022
Submission Date March 15, 2021
Acceptance Date April 2, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Şenyurt, S., & Çakır, O. (2022). Characterizations of a Bertrand Curve According to Darboux Vector. Konuralp Journal of Mathematics, 10(1), 112-117.
AMA Şenyurt S, Çakır O. Characterizations of a Bertrand Curve According to Darboux Vector. Konuralp J. Math. April 2022;10(1):112-117.
Chicago Şenyurt, Süleyman, and Osman Çakır. “Characterizations of a Bertrand Curve According to Darboux Vector”. Konuralp Journal of Mathematics 10, no. 1 (April 2022): 112-17.
EndNote Şenyurt S, Çakır O (April 1, 2022) Characterizations of a Bertrand Curve According to Darboux Vector. Konuralp Journal of Mathematics 10 1 112–117.
IEEE S. Şenyurt and O. Çakır, “Characterizations of a Bertrand Curve According to Darboux Vector”, Konuralp J. Math., vol. 10, no. 1, pp. 112–117, 2022.
ISNAD Şenyurt, Süleyman - Çakır, Osman. “Characterizations of a Bertrand Curve According to Darboux Vector”. Konuralp Journal of Mathematics 10/1 (April 2022), 112-117.
JAMA Şenyurt S, Çakır O. Characterizations of a Bertrand Curve According to Darboux Vector. Konuralp J. Math. 2022;10:112–117.
MLA Şenyurt, Süleyman and Osman Çakır. “Characterizations of a Bertrand Curve According to Darboux Vector”. Konuralp Journal of Mathematics, vol. 10, no. 1, 2022, pp. 112-7.
Vancouver Şenyurt S, Çakır O. Characterizations of a Bertrand Curve According to Darboux Vector. Konuralp J. Math. 2022;10(1):112-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.