Research Article
BibTex RIS Cite

Weakly Poor Modules

Year 2022, Volume: 10 Issue: 2, 250 - 254, 31.10.2022

Abstract

In this paper, weakly poor modules are introduced as modules whose injectivity domains are contained in the class of all copure-split modules. This notion gives a generalization of both poor modules and copure-injectively poor modules. Properties involving weakly poor modules as well as examples that show the relations between weakly poor modules, poor modules, impecunious modules and copure-injectively poor modules are given. Rings over which every module is weakly poor are right CDS. A ring over which there is a cyclic projective weakly poor module is proved to be weakly poor. Moreover, the characterizations of weakly poor abelian groups is given. It states that an abelian group $A$ is weakly poor if and only if $A$ is impecunious if and only if for every prime integer $p$, $A$ has a direct summand isomorphic to $\mathbb{Z}_{p^{n}}$ for some positive integer $n$. Consequently, an example of a weakly poor abelian group which is neither poor nor copure-injectively poor is given so that the generalization defined is proper.

References

  • [1] Alag¨oz, Y., Relative subcopure-injective modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 832-846 (2020).
  • [2] Anderson, F.W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York, 1974.
  • [3] Alahmadi, A. N., Alkan, M., L´opez-Permouth, S. R., Poor modules: The opposite of injectivity, Glasg. Math. J., 52(A), 7-17 (2010).
  • [4] Alizade, R., B¨uy¨ukas¸ık, E., Poor and pi-poor abelian groups, Comm. Algebra, 45(1), 420-427 (2017).
  • [5] Demirci, Y. M., Modules and abelian groups with a bounded domain of injectivity, J. Algebra Appl., 16(2), 1850108 (2018).
  • [6] Demirci, Y. M., Nis¸ancı T¨urkmen, B., T¨urkmen, E., Rings with modules having a restricted injectivity domain, S˜ao Paulo J. Math. Sci. 14, 312-326 (2020).
  • [7] Fieldhouse, D. J., Pure theories, Math. Ann., 184, 1-18 (1969).
  • [8] Harmanci, A., Lo´pez-Permouth, S. R., U¨ ngo¨r, B., On the pure-injectivity profile of a ring, Comm. Algebra, 43(11), 4984-5002 (2015).
  • [9] Hiremath, V. A., Cofinitely generated and cofinitely related modules, Acta Math. Acad. Sci. Hungar., 39, 1-9 (1982).
  • [10] Hiremath (Madurai), V. A., Copure Submodules, Acta Math. Hung., 44(1-2), 3-12 (1984).
  • [11] Hiremath (Madurai), V. A., Copure-injective modules, Indian J. Pure Appl. Math., 20(3), 250-259 (1989).
  • [12] Jans, J. P., On co-noetherian rings, J. London Math. Soc., 1, 588-590 (1969).
  • [13] Maurya, S. K., Toksoy, S. E., Copure-direct-injective modules, J. Algebra Appl., 21(9), 2250187 (2022).
  • [14] Mohamed, S. H., M¨uller, B. J., Continuous and discrete modules, London Mathematical Society Lecture Note 147 (Cambridge University Press), Cambridge 1990.
  • [15] Sharpe, D.W., Vamos, P., Injective Modules, Cambridge Tracts in Mathematics and Mathematical Physics, 62, Cambridge. 1972.
  • [16] Toksoy, S. E., Modules with minimal copure-injectivity domain, J. Algebra Appl., 18(11), 1950201 (2019).
  • [17] Vamos, P., The dual of the notion of “finitely generated”, J. London Math. Soc., 43, 643-646 (1968).
  • [18] Vamos, P., Classical rings, J. Algebra, 34, 114-129 (1975).
Year 2022, Volume: 10 Issue: 2, 250 - 254, 31.10.2022

Abstract

References

  • [1] Alag¨oz, Y., Relative subcopure-injective modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 832-846 (2020).
  • [2] Anderson, F.W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York, 1974.
  • [3] Alahmadi, A. N., Alkan, M., L´opez-Permouth, S. R., Poor modules: The opposite of injectivity, Glasg. Math. J., 52(A), 7-17 (2010).
  • [4] Alizade, R., B¨uy¨ukas¸ık, E., Poor and pi-poor abelian groups, Comm. Algebra, 45(1), 420-427 (2017).
  • [5] Demirci, Y. M., Modules and abelian groups with a bounded domain of injectivity, J. Algebra Appl., 16(2), 1850108 (2018).
  • [6] Demirci, Y. M., Nis¸ancı T¨urkmen, B., T¨urkmen, E., Rings with modules having a restricted injectivity domain, S˜ao Paulo J. Math. Sci. 14, 312-326 (2020).
  • [7] Fieldhouse, D. J., Pure theories, Math. Ann., 184, 1-18 (1969).
  • [8] Harmanci, A., Lo´pez-Permouth, S. R., U¨ ngo¨r, B., On the pure-injectivity profile of a ring, Comm. Algebra, 43(11), 4984-5002 (2015).
  • [9] Hiremath, V. A., Cofinitely generated and cofinitely related modules, Acta Math. Acad. Sci. Hungar., 39, 1-9 (1982).
  • [10] Hiremath (Madurai), V. A., Copure Submodules, Acta Math. Hung., 44(1-2), 3-12 (1984).
  • [11] Hiremath (Madurai), V. A., Copure-injective modules, Indian J. Pure Appl. Math., 20(3), 250-259 (1989).
  • [12] Jans, J. P., On co-noetherian rings, J. London Math. Soc., 1, 588-590 (1969).
  • [13] Maurya, S. K., Toksoy, S. E., Copure-direct-injective modules, J. Algebra Appl., 21(9), 2250187 (2022).
  • [14] Mohamed, S. H., M¨uller, B. J., Continuous and discrete modules, London Mathematical Society Lecture Note 147 (Cambridge University Press), Cambridge 1990.
  • [15] Sharpe, D.W., Vamos, P., Injective Modules, Cambridge Tracts in Mathematics and Mathematical Physics, 62, Cambridge. 1972.
  • [16] Toksoy, S. E., Modules with minimal copure-injectivity domain, J. Algebra Appl., 18(11), 1950201 (2019).
  • [17] Vamos, P., The dual of the notion of “finitely generated”, J. London Math. Soc., 43, 643-646 (1968).
  • [18] Vamos, P., Classical rings, J. Algebra, 34, 114-129 (1975).
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Yusuf Alagöz

Publication Date October 31, 2022
Submission Date May 10, 2022
Acceptance Date September 13, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Alagöz, Y. (2022). Weakly Poor Modules. Konuralp Journal of Mathematics, 10(2), 250-254.
AMA Alagöz Y. Weakly Poor Modules. Konuralp J. Math. October 2022;10(2):250-254.
Chicago Alagöz, Yusuf. “Weakly Poor Modules”. Konuralp Journal of Mathematics 10, no. 2 (October 2022): 250-54.
EndNote Alagöz Y (October 1, 2022) Weakly Poor Modules. Konuralp Journal of Mathematics 10 2 250–254.
IEEE Y. Alagöz, “Weakly Poor Modules”, Konuralp J. Math., vol. 10, no. 2, pp. 250–254, 2022.
ISNAD Alagöz, Yusuf. “Weakly Poor Modules”. Konuralp Journal of Mathematics 10/2 (October 2022), 250-254.
JAMA Alagöz Y. Weakly Poor Modules. Konuralp J. Math. 2022;10:250–254.
MLA Alagöz, Yusuf. “Weakly Poor Modules”. Konuralp Journal of Mathematics, vol. 10, no. 2, 2022, pp. 250-4.
Vancouver Alagöz Y. Weakly Poor Modules. Konuralp J. Math. 2022;10(2):250-4.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.