On the Construction of the Surface Family with a Common Involute Geodesic
Year 2023,
Volume: 11 Issue: 2, 162 - 168, 31.10.2023
Mustafa Bilici
,
Ergin Bayram
Abstract
In this study, we produce a surface family possessing an involute of a given curve as a geodesic. We find necessary and sufficient conditions for the given curve such that its involute is a geodesic on any member of the surface family. Also, we present important results for ruled and developable surfaces. Finally, we present two examples to support our results.
References
- [1] J. McCleary Geometry from a differentiable viewpoint. Cambridge University Press, 1995.
- [2] G.J. Wang, K. Tang and C.L.Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Des., 36(5) (2004),
447-459.
- [3] E. Kasap, F.T. Akyıldız and K. Orbay, A generalization of surfaces family with common spatial geodesic, Appl. Math. Comput., 201 (2008), 781–789.
- [4] E. Kasap, F.T. Akyildiz, Surfaces with common geodesic in Minkowski 3-space, Appl. Math. Comput., 177 (2006), 260-270.
- [5] G. S¸ affak, E. Kasap, Family of surface with a common null geodesic. Int. J. Phys. Sci., 4(8) (2009), 428-433.
- [6] G. S¸ affak, E. Kasap, Surfaces family with common null asymptotic. Appl. Math. Comput. 260 (2015), 135139.
- [7] C.Y. Li, R.H. Wang, C.G. Zhu, Parametric representation of a surface pencil with a common line of curvature. Comput. Aided Des. 43(9) (2011)
1110–1117.
- [8] Bayram E., G¨uler F., Kasap E. Parametric representation of a surface pencil with a common asymptotic curve. Comput. Aided Des. 44, 637-643, 2012.
- [9] E. Bayram, M. Bilici, Surface family with a common involute asymptotic curve, International Journal of Geometric Methods in Modern Physics, 13(5)
(2016), 1650062.
- [10] E. Erg¨un, E. Bayram, E. Kasap, Surface pencil with a common line of curvature in Minkowski 3-space. Acta Math. Sinica, English Series. 30(12)
(2014), 2103-2118.
- [11] M.P. do Carmo, Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1976.
- [12] Hsiung CC. A first course in differential geometry. John Wiley & Sons Inc., USA, 1981.
- [13] J. Oprea, Differential geometry and its applications. Pearson Education Inc., USA, 2007.
- [14] M. C¸ alıs¸kan, M. Bilici, Some characterizations for the pair of involute-evolute curves in Euclidean space E3. Bull. of Pure and App. Sci., 21E(2) (2002),
289-294.
- [15] M. Bilici, E. Bayram, Surface construction with a common involute line of curvature, Int. J. Open Problems Compt. Math, 14(2) (2021), 20-31.
- [16] S. Senyurt, S. Sivas and A. C¸ alıs¸kan, NC Smarandache curves of involute evolute curve couple according to Frenet frame algebras, Groups And
Geometries, 33(2) (2016), 153-164.
- [17] S. Kılıc¸o˘glu, S. Senyurt and A. C¸ alıskan, On the tangent vector fields of striction curves along the involute and Bertrandian Frenet ruled surfaces,
International J. Math. Combin, 2 (2018), 33-43.
- [18] K. Eren, K. Yesmakhanova, S. Ersoy and R. Myrzakulov, Involute evolute curve family induced by the coupled dispersionless equations. Optik, 270
(2022), 169915.
- [19] M. Bilici, S. Palavar, New-type tangent indicatrix of involute and ruled surface according to Blaschke frame in dual space, Maejo Int. J. Sci. Technol.,
16(3) (2022), 199-207.
- [20] S. Sivas, S. Senyurt and A. C¸ alıskan, Smarandache curves of involute-evolute curve According to Frenet Frame, Fundam. Contemp. Math. Sci. , 4(1)
(2023), 31-45.
- [21] M. Bilici, A Survey on Timelike-spacelike involute-evolute curve pair, Erzincan University J. Sci. Technol., 16 (1) (2023), 49-57 .
- [22] M. Bilici, A new method for designing involute trajectory timelike ruled surfaces in Minkowski 3-space, Bol. da Soc. Parana. de Mat., 41 (2023), 1-11.
- [23] G. K¨oseo˘glu, M. Bilici, Involutive sweeping surfaces with Frenet frame in Euclidean 3-space, HELIYON, 9(8) (2023), e18822.
- [24] M. Bilici, G. K¨oseo˘glu, Tubular involutive surfaces with Frenet frame in Euclidean 3-space, Maejo Int. J. Sci. Technol., 17(2) (2023), 96-106.
Year 2023,
Volume: 11 Issue: 2, 162 - 168, 31.10.2023
Mustafa Bilici
,
Ergin Bayram
References
- [1] J. McCleary Geometry from a differentiable viewpoint. Cambridge University Press, 1995.
- [2] G.J. Wang, K. Tang and C.L.Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Des., 36(5) (2004),
447-459.
- [3] E. Kasap, F.T. Akyıldız and K. Orbay, A generalization of surfaces family with common spatial geodesic, Appl. Math. Comput., 201 (2008), 781–789.
- [4] E. Kasap, F.T. Akyildiz, Surfaces with common geodesic in Minkowski 3-space, Appl. Math. Comput., 177 (2006), 260-270.
- [5] G. S¸ affak, E. Kasap, Family of surface with a common null geodesic. Int. J. Phys. Sci., 4(8) (2009), 428-433.
- [6] G. S¸ affak, E. Kasap, Surfaces family with common null asymptotic. Appl. Math. Comput. 260 (2015), 135139.
- [7] C.Y. Li, R.H. Wang, C.G. Zhu, Parametric representation of a surface pencil with a common line of curvature. Comput. Aided Des. 43(9) (2011)
1110–1117.
- [8] Bayram E., G¨uler F., Kasap E. Parametric representation of a surface pencil with a common asymptotic curve. Comput. Aided Des. 44, 637-643, 2012.
- [9] E. Bayram, M. Bilici, Surface family with a common involute asymptotic curve, International Journal of Geometric Methods in Modern Physics, 13(5)
(2016), 1650062.
- [10] E. Erg¨un, E. Bayram, E. Kasap, Surface pencil with a common line of curvature in Minkowski 3-space. Acta Math. Sinica, English Series. 30(12)
(2014), 2103-2118.
- [11] M.P. do Carmo, Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1976.
- [12] Hsiung CC. A first course in differential geometry. John Wiley & Sons Inc., USA, 1981.
- [13] J. Oprea, Differential geometry and its applications. Pearson Education Inc., USA, 2007.
- [14] M. C¸ alıs¸kan, M. Bilici, Some characterizations for the pair of involute-evolute curves in Euclidean space E3. Bull. of Pure and App. Sci., 21E(2) (2002),
289-294.
- [15] M. Bilici, E. Bayram, Surface construction with a common involute line of curvature, Int. J. Open Problems Compt. Math, 14(2) (2021), 20-31.
- [16] S. Senyurt, S. Sivas and A. C¸ alıs¸kan, NC Smarandache curves of involute evolute curve couple according to Frenet frame algebras, Groups And
Geometries, 33(2) (2016), 153-164.
- [17] S. Kılıc¸o˘glu, S. Senyurt and A. C¸ alıskan, On the tangent vector fields of striction curves along the involute and Bertrandian Frenet ruled surfaces,
International J. Math. Combin, 2 (2018), 33-43.
- [18] K. Eren, K. Yesmakhanova, S. Ersoy and R. Myrzakulov, Involute evolute curve family induced by the coupled dispersionless equations. Optik, 270
(2022), 169915.
- [19] M. Bilici, S. Palavar, New-type tangent indicatrix of involute and ruled surface according to Blaschke frame in dual space, Maejo Int. J. Sci. Technol.,
16(3) (2022), 199-207.
- [20] S. Sivas, S. Senyurt and A. C¸ alıskan, Smarandache curves of involute-evolute curve According to Frenet Frame, Fundam. Contemp. Math. Sci. , 4(1)
(2023), 31-45.
- [21] M. Bilici, A Survey on Timelike-spacelike involute-evolute curve pair, Erzincan University J. Sci. Technol., 16 (1) (2023), 49-57 .
- [22] M. Bilici, A new method for designing involute trajectory timelike ruled surfaces in Minkowski 3-space, Bol. da Soc. Parana. de Mat., 41 (2023), 1-11.
- [23] G. K¨oseo˘glu, M. Bilici, Involutive sweeping surfaces with Frenet frame in Euclidean 3-space, HELIYON, 9(8) (2023), e18822.
- [24] M. Bilici, G. K¨oseo˘glu, Tubular involutive surfaces with Frenet frame in Euclidean 3-space, Maejo Int. J. Sci. Technol., 17(2) (2023), 96-106.